DMLC深度机器学习框架MXNet的编译安装
这篇文章将介绍MXNet的编译安装。
MXNet的编译安装分为两步:
- 首先,从C++源码编译共享库(libmxnet.so for linux,libmxnet.dylib for osx,libmxnet.dll for windows)。
- 接着,安装语言包。
1. 构建共享库依赖
目标是构建共享库文件。
最小构建需求:
- 最新的支持C++ 11的C++编译器,比如g++ >= 4.8,clang
- 一份BLAS库,比如libblas,atlas,openblas,或者 intel mkl
可选库:
CUDA Toolkit >= v7.0
以运行 nvidia GPUs- 需要 GPU 支持
Compute Capability >= 2.0
- 需要 GPU 支持
- CUDNN 加速 GPU computation (only CUDNN 3 is supported)
- opencv 进行图像的分段
2. Ubuntu/Debian上构建
安装依赖:
sudo apt-get update
sudo apt-get install -y build-essential git libatlas-base-dev libopencv-dev
构建MXNet:
git clone --recursive https://github.com/dmlc/mxnet
cd mxnet;
cp make/config.mk .
make -j4
3. OSX上的构建
安装依赖:
brew update
brew tap homebrew/science
brew info opencv
brew install opencv
构建MXNet:
git clone --recursive https://github.com/dmlc/mxnet
cd mxnet; cp make/osx.mk ./config.mk; make -j4
4. Windows上的构建
Windows上,已经提供好预构建好的安装包,可以通过https://github.com/dmlc/mxnet/releases 下载。下载之后,解压并运行目录下的 setupenv.cmd 命令即可安装设置好环境。之后,即可编译运行MXNet的C++程序,或者安装Python包。
当然,你也可以自己编译。
5. Python包的安装
MXNet Python包的前提要求:python>=2.7
and numpy
可运行如下命令测试:
python example/image-classification/train_mnist.py
或者, 假如在编译的时候设置了USE_CUDA=1
,可以使用GPU 0 来训练卷积神经网络。命令如下:
python example/image-classification/train_mnist.py --network lenet --gpus 0
如果报错,找不到类似这样的库文件 libcudart.so.7.5,则要设置LD_LIBRARY_PATH,最简单的方式在你的 /etc/profile 或 ~/.bashrc 文件中添加如下语句
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
或者执行命令 sudo vi /etc/ld.so.conf.d/cuda.conf,在文件中添加如下内容:
/usr/local/cuda/lib64
/lib
然后再执行命令:
sudo ldconfig -v
MXNet的Python包有多种安装方式,最简单明了的就是 添加 PYTHONPATH 环境变量,推荐开发者使用这种安装模式。使用这种安装模式,如果更新MXNet,并重新构建共享库之后,不需要任何重新安装Python包的步骤。否则,还必须重新安装MXNet的Python安装包,才能使用最新的。
假设 mxnet 在你的主目录下,则 可以修改 ~/.bashrc 文件,并添加一行如下:
export PYTHONPATH=~/mxnet/python
6. R 包安装
Windows/Mac users:
对于Windows/Mac users,有已编译好R包,可以在R控制台,直接运行如下命令:
install.packages("drat", repos="https://cran.rstudio.com")
drat:::addRepo("dmlc")
install.packages("mxnet")
由于可能会更新,所以最好每周执行上面的命令,更新。
编译安装:
在mxnet目录下,执行如下命令:
Rscript -e "install.packages('devtools', repo = 'https://cran.rstudio.com')"
cd R-package
Rscript -e "library(devtools); library(methods); options(repos=c(CRAN='https://cran.rstudio.com')); install_deps(dependencies = TRUE)"
cd ..
make rpkg
如果有报缺少包的错误,则需先安装相应的R包,再执行以上命令。
比如我的R环境缺少 roxygen2 包,则在R控制台,执行如下命令:
install.packages("roxygen2")
然后再执行最上面的脚本,编译出安装包,比如 mxnet_0.5.tar.gz 文件,最后执行如下命令安装:
R CMD INSTALL mxnet_0.5.tar.gz
7. 可选包安装
CUDA
下载网址: CUDA
缺省的编译不支持CUDA,所以如果要添加CUDA支持,要修改 config.mk 文件中的编译选项,使之支持CUDA。
CUDA有几种安装方式,由于文件比较大,国内有源,所以这里选择从网络安装。
下载相应的网络包,如我的是 cuda-repo-ubuntu1504_7.5-18_amd64.deb 。然后执行如下命令:
sudo dpkg -i cuda-repo-ubuntu1504_7.5-18_amd64.deb
sudo apt-get update
sudo apt-get install cuda
修改文件 mxnet/make/config.mk,打开CUDA支持,如下:
USE_CUDA = 1
USE_CUDA_PATH = /usr/local/cuda
如果以GPU计算模式执行报错,说找不到类似这样的库文件 libcudart.so.7.5,则要设置LD_LIBRARY_PATH,最简单的方式在你的 /etc/profile 或 ~/.bashrc 文件中添加如下语句:
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
或者执行命令 sudo vi /etc/ld.so.conf.d/cuda.conf,在文件中添加如下内容:
/usr/local/cuda/lib64
/lib
然后再执行命令:
sudo ldconfig -v
CUDNN
下载网址:CUDNN (需要注册申请,批准通过,才能下载)
缺省的编译不支持CUDNN,所以如果要添加CUDNN支持,要修改make/config.mk文件中的编译选项,使之支持CUDNN。
解压缩下载文件,将 include 和 lib64 拷贝放置在 /usr/local/cuda 目录下即可。
执行如下命令修改链接文件:
cd /usr/local/cuda/lib64
rm -rf libcudnn.so libcudnn.so.4
ln -s libcudnn.so.4.0.4 libcudnn.so.4
ln -s libcudnn.so.4 libcudnn.so
OpenCV
下载网址:OpenCV
缺省的编译支持OpenCV。
参考引用:
MXNet主页: https://github.com/dmlc/mxnet/
MXNet编译安装参考文档:http://mxnet.readthedocs.org/en/latest/build.html
DMLC深度机器学习框架MXNet的编译安装的更多相关文章
- 深度学习框架Caffe的编译安装
深度学习框架caffe特点,富有表达性.快速.模块化.下面介绍caffe如何在Ubuntu上编译安装. 1. 前提条件 安装依赖的软件包: CUDA 用来使用GPU模式计算. 建议使用 7.0 以上最 ...
- 人工智能深度学习框架MXNet实战:深度神经网络的交通标志识别训练
人工智能深度学习框架MXNet实战:深度神经网络的交通标志识别训练 MXNet 是一个轻量级.可移植.灵活的分布式深度学习框架,2017 年 1 月 23 日,该项目进入 Apache 基金会,成为 ...
- 机器学习框架MXnet安装步骤
安装环境:redhat7.1+vmw 安装步骤: # Install git if not already installed. sudo yum -y install git-all# Clone ...
- Ubuntu 14.04 安装caffe深度学习框架
简介:如何在ubuntu 14.04 下安装caffe深度学习框架. 注:安装caffe时一定要保持网络状态好,不然会遇到很多麻烦.例如下载不了,各种报错. 一.安装依赖包 $ sudo apt-ge ...
- 28款GitHub最流行的开源机器学习项目,推荐GitHub上10 个开源深度学习框架
20 个顶尖的 Python 机器学习开源项目 机器学习 2015-06-08 22:44:30 发布 您的评价: 0.0 收藏 1收藏 我们在Github上的贡献者和提交者之中检查了用Python语 ...
- 转:TensorFlow和Caffe、MXNet、Keras等其他深度学习框架的对比
http://geek.csdn.net/news/detail/138968 Google近日发布了TensorFlow 1.0候选版,这第一个稳定版将是深度学习框架发展中的里程碑的一步.自Tens ...
- Amazon宣布将MXNet作为AWS的深度学习框架——貌似性能比tf高啊
Amazon公司的Werner Vogels于上周宣布Amazon深度学习框架将会正式选用MXNet,并且AWS将会通过增加源代码贡献.改进文档以及支持来自其它框架的可视化.开发以及迁移工具,为实现M ...
- tensorflow/pytorch/mxnet的pip安装,非源代码编译,基于cuda10/cudnn7.4.1/ubuntu18.04.md
os安装 目前对tensorflow和cuda支持最好的是ubuntu的18.04 ,16.04这种lts,推荐使用18.04版本.非lts的版本一般不推荐. Windows倒是也能用来装深度GPU环 ...
- MXNet在64位Win7下的编译安装
注:本文原创,作者:Noah Zhang (http://www.cnblogs.com/noahzn/) 我笔记本配置比较低,想装个轻量级的MXNet试试,装完之后报错,不是有效的应用程序,找不到 ...
随机推荐
- C# 实现屏幕键盘 (ScreenKeyboard)
原文地址:http://www.cnblogs.com/youzai/archive/2008/05/19/1202732.html 要实现一个屏幕键盘,需要监听所有键盘事件,无论窗体是否被激活.因此 ...
- Debian下VIM的安装和配置
1.安装 apt-get install vim 2.配置 这是我的vim 配饰文件,基本的功能都能实现,在这里做一个备份,省的以后重装系统还要到处找这个配置文件(/etc/vim/vimrc) : ...
- xv6的设计trick(不断更新)
1.每个进程通过时钟中断出发trap.c中的 if(proc && proc->state == RUNNING && tf->trapno == T_IR ...
- 第一章C语言简介及输出函数 上机部分
第一章C语言简介及输出函数 上机1 #include "stdio.h" void main() { printf("南方学院,你好!\n"); printf( ...
- AutoTile 自动拼接(二) 学习与实践
开始代码前,我们要做点准备工作. 下面 跟着我做. 首先我 扣了一个 图. 这个是 做 水的资源,所以是动态的,我把其余两张也扣了出来. 看起来一样,不是,这样看肯定 看不出所以然,你们先放到u3d中 ...
- android下m、mm、mmm编译命令的使用
android下m.mm.mmm编译命令的使用 通过查看android源码目录下的build/envsetup.sh文件,可知: - m: Makes from the top of th ...
- ZooKeeper概述
1.Zookeeper概述 Zookeeper 是 Google 的 Chubby一个开源的实现,是 Hadoop 的分布式协调服务.它包含一个简单的原语集,分布式应用程序可以基于它实现同步服务,配置 ...
- nested query for "pat2" table
mysql> select t.appln_id, t.filing_date, t.appln_kind, t.people, GROUP_CONCAT(pu.publn_kind) from ...
- 剑指offer反转链表
way1: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 3 ...
- centos minimal Bind 主从服务器部署
实验环境 两台虚拟机BindM和BindS,装的系统都是centos6.3 minimal IP地址 主机名hostname 主DNS服务器 192.168.137.102 bindm.cas.c ...