这篇文章将介绍MXNet的编译安装。

  MXNet的编译安装分为两步:

    1. 首先,从C++源码编译共享库(libmxnet.so for linux,libmxnet.dylib for osx,libmxnet.dll for windows)。
    2. 接着,安装语言包。

1. 构建共享库依赖

  目标是构建共享库文件。

最小构建需求:

  • 最新的支持C++ 11的C++编译器,比如g++ >= 4.8,clang
  • 一份BLAS库,比如libblas,atlas,openblas,或者 intel mkl

可选库:

  • CUDA Toolkit >= v7.0 以运行 nvidia GPUs

    • 需要 GPU 支持 Compute Capability >= 2.0
  • CUDNN 加速 GPU computation (only CUDNN 3 is supported)
  • opencv 进行图像的分段

2. Ubuntu/Debian上构建

安装依赖:

sudo apt-get update
sudo apt-get install -y build-essential git libatlas-base-dev libopencv-dev

构建MXNet:

git clone --recursive https://github.com/dmlc/mxnet
cd mxnet;
cp make/config.mk .
make -j4

3. OSX上的构建

安装依赖:

brew update
brew tap homebrew/science
brew info opencv
brew install opencv

构建MXNet:

git clone --recursive https://github.com/dmlc/mxnet
cd mxnet; cp make/osx.mk ./config.mk; make -j4

  

4. Windows上的构建

  Windows上,已经提供好预构建好的安装包,可以通过https://github.com/dmlc/mxnet/releases 下载。下载之后,解压并运行目录下的 setupenv.cmd 命令即可安装设置好环境。之后,即可编译运行MXNet的C++程序,或者安装Python包。

  当然,你也可以自己编译。

5. Python包的安装

  MXNet Python包的前提要求:python>=2.7 and numpy

  可运行如下命令测试:

python example/image-classification/train_mnist.py

  或者, 假如在编译的时候设置了USE_CUDA=1,可以使用GPU 0 来训练卷积神经网络。命令如下:

python example/image-classification/train_mnist.py --network lenet --gpus 0

  如果报错,找不到类似这样的库文件 libcudart.so.7.5,则要设置LD_LIBRARY_PATH,最简单的方式在你的 /etc/profile 或 ~/.bashrc 文件中添加如下语句

    export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
  

  或者执行命令 sudo vi /etc/ld.so.conf.d/cuda.conf,在文件中添加如下内容:

/usr/local/cuda/lib64
/lib

  然后再执行命令:

sudo ldconfig -v

  MXNet的Python包有多种安装方式,最简单明了的就是 添加 PYTHONPATH 环境变量,推荐开发者使用这种安装模式。使用这种安装模式,如果更新MXNet,并重新构建共享库之后,不需要任何重新安装Python包的步骤。否则,还必须重新安装MXNet的Python安装包,才能使用最新的。

  假设 mxnet 在你的主目录下,则 可以修改 ~/.bashrc 文件,并添加一行如下:

export PYTHONPATH=~/mxnet/python

  

6. R 包安装

Windows/Mac users:

  对于Windows/Mac users,有已编译好R包,可以在R控制台,直接运行如下命令:

install.packages("drat", repos="https://cran.rstudio.com")
drat:::addRepo("dmlc")
install.packages("mxnet")

  由于可能会更新,所以最好每周执行上面的命令,更新。

编译安装:

  在mxnet目录下,执行如下命令:

Rscript -e "install.packages('devtools', repo = 'https://cran.rstudio.com')"
cd R-package
Rscript -e "library(devtools); library(methods); options(repos=c(CRAN='https://cran.rstudio.com')); install_deps(dependencies = TRUE)"
cd ..
make rpkg

  如果有报缺少包的错误,则需先安装相应的R包,再执行以上命令。

  比如我的R环境缺少 roxygen2 包,则在R控制台,执行如下命令:

 install.packages("roxygen2")

  然后再执行最上面的脚本,编译出安装包,比如 mxnet_0.5.tar.gz 文件,最后执行如下命令安装:

R CMD INSTALL mxnet_0.5.tar.gz

  

7. 可选包安装

CUDA

  下载网址: CUDA

  缺省的编译不支持CUDA,所以如果要添加CUDA支持,要修改 config.mk 文件中的编译选项,使之支持CUDA。

  CUDA有几种安装方式,由于文件比较大,国内有源,所以这里选择从网络安装。

  下载相应的网络包,如我的是 cuda-repo-ubuntu1504_7.5-18_amd64.deb 。然后执行如下命令:

sudo dpkg -i cuda-repo-ubuntu1504_7.5-18_amd64.deb
sudo apt-get update
sudo apt-get install cuda

  修改文件 mxnet/make/config.mk,打开CUDA支持,如下:

    USE_CUDA = 1
    USE_CUDA_PATH = /usr/local/cuda

  如果以GPU计算模式执行报错,说找不到类似这样的库文件 libcudart.so.7.5,则要设置LD_LIBRARY_PATH,最简单的方式在你的 /etc/profile 或 ~/.bashrc 文件中添加如下语句:

    export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
  

  或者执行命令 sudo vi /etc/ld.so.conf.d/cuda.conf,在文件中添加如下内容:

/usr/local/cuda/lib64
/lib

然后再执行命令:

sudo ldconfig -v

CUDNN

  下载网址:CUDNN (需要注册申请,批准通过,才能下载)

  缺省的编译不支持CUDNN,所以如果要添加CUDNN支持,要修改make/config.mk文件中的编译选项,使之支持CUDNN。

  解压缩下载文件,将 include 和 lib64 拷贝放置在 /usr/local/cuda 目录下即可。

  执行如下命令修改链接文件:

cd /usr/local/cuda/lib64
rm -rf libcudnn.so libcudnn.so.4
ln -s libcudnn.so.4.0.4 libcudnn.so.4
ln -s libcudnn.so.4 libcudnn.so

OpenCV

  下载网址:OpenCV

  缺省的编译支持OpenCV。

参考引用:

  MXNet主页: https://github.com/dmlc/mxnet/

  MXNet编译安装参考文档:http://mxnet.readthedocs.org/en/latest/build.html

DMLC深度机器学习框架MXNet的编译安装的更多相关文章

  1. 深度学习框架Caffe的编译安装

    深度学习框架caffe特点,富有表达性.快速.模块化.下面介绍caffe如何在Ubuntu上编译安装. 1. 前提条件 安装依赖的软件包: CUDA 用来使用GPU模式计算. 建议使用 7.0 以上最 ...

  2. 人工智能深度学习框架MXNet实战:深度神经网络的交通标志识别训练

    人工智能深度学习框架MXNet实战:深度神经网络的交通标志识别训练 MXNet 是一个轻量级.可移植.灵活的分布式深度学习框架,2017 年 1 月 23 日,该项目进入 Apache 基金会,成为 ...

  3. 机器学习框架MXnet安装步骤

    安装环境:redhat7.1+vmw 安装步骤: # Install git if not already installed. sudo yum -y install git-all# Clone ...

  4. Ubuntu 14.04 安装caffe深度学习框架

    简介:如何在ubuntu 14.04 下安装caffe深度学习框架. 注:安装caffe时一定要保持网络状态好,不然会遇到很多麻烦.例如下载不了,各种报错. 一.安装依赖包 $ sudo apt-ge ...

  5. 28款GitHub最流行的开源机器学习项目,推荐GitHub上10 个开源深度学习框架

    20 个顶尖的 Python 机器学习开源项目 机器学习 2015-06-08 22:44:30 发布 您的评价: 0.0 收藏 1收藏 我们在Github上的贡献者和提交者之中检查了用Python语 ...

  6. 转:TensorFlow和Caffe、MXNet、Keras等其他深度学习框架的对比

    http://geek.csdn.net/news/detail/138968 Google近日发布了TensorFlow 1.0候选版,这第一个稳定版将是深度学习框架发展中的里程碑的一步.自Tens ...

  7. Amazon宣布将MXNet作为AWS的深度学习框架——貌似性能比tf高啊

    Amazon公司的Werner Vogels于上周宣布Amazon深度学习框架将会正式选用MXNet,并且AWS将会通过增加源代码贡献.改进文档以及支持来自其它框架的可视化.开发以及迁移工具,为实现M ...

  8. tensorflow/pytorch/mxnet的pip安装,非源代码编译,基于cuda10/cudnn7.4.1/ubuntu18.04.md

    os安装 目前对tensorflow和cuda支持最好的是ubuntu的18.04 ,16.04这种lts,推荐使用18.04版本.非lts的版本一般不推荐. Windows倒是也能用来装深度GPU环 ...

  9. MXNet在64位Win7下的编译安装

    注:本文原创,作者:Noah Zhang  (http://www.cnblogs.com/noahzn/) 我笔记本配置比较低,想装个轻量级的MXNet试试,装完之后报错,不是有效的应用程序,找不到 ...

随机推荐

  1. C# 实现屏幕键盘 (ScreenKeyboard)

    原文地址:http://www.cnblogs.com/youzai/archive/2008/05/19/1202732.html 要实现一个屏幕键盘,需要监听所有键盘事件,无论窗体是否被激活.因此 ...

  2. Debian下VIM的安装和配置

    1.安装 apt-get install vim 2.配置 这是我的vim 配饰文件,基本的功能都能实现,在这里做一个备份,省的以后重装系统还要到处找这个配置文件(/etc/vim/vimrc) : ...

  3. xv6的设计trick(不断更新)

    1.每个进程通过时钟中断出发trap.c中的 if(proc && proc->state == RUNNING && tf->trapno == T_IR ...

  4. 第一章C语言简介及输出函数 上机部分

    第一章C语言简介及输出函数 上机1 #include "stdio.h" void main() { printf("南方学院,你好!\n"); printf( ...

  5. AutoTile 自动拼接(二) 学习与实践

    开始代码前,我们要做点准备工作. 下面 跟着我做. 首先我 扣了一个 图. 这个是 做 水的资源,所以是动态的,我把其余两张也扣了出来. 看起来一样,不是,这样看肯定 看不出所以然,你们先放到u3d中 ...

  6. android下m、mm、mmm编译命令的使用

    android下m.mm.mmm编译命令的使用 通过查看android源码目录下的build/envsetup.sh文件,可知: - m:       Makes from the top of th ...

  7. ZooKeeper概述

    1.Zookeeper概述 Zookeeper 是 Google 的 Chubby一个开源的实现,是 Hadoop 的分布式协调服务.它包含一个简单的原语集,分布式应用程序可以基于它实现同步服务,配置 ...

  8. nested query for "pat2" table

    mysql> select t.appln_id, t.filing_date, t.appln_kind, t.people, GROUP_CONCAT(pu.publn_kind) from ...

  9. 剑指offer反转链表

    way1: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 3 ...

  10. centos minimal Bind 主从服务器部署

    实验环境 两台虚拟机BindM和BindS,装的系统都是centos6.3 minimal   IP地址 主机名hostname 主DNS服务器 192.168.137.102 bindm.cas.c ...