深度优先搜索(DFS)它是一个搜索算法。第一次接触DFS它应该是一个二进制树的遍历内部,二叉树预订、序和后序实际上属于深度遍历-first。在本质上,深度优先搜索,遍历中则看到了更纯正的深度优先搜索算法。

通常。我们将回溯法和DFS等同看待。能够用一个等式表示它们的关系:回溯法=DFS+剪枝。所以回溯法是DFS的延伸。其目的在于通过剪枝使得在深度优先搜索过程中假设满足了回溯条件不必找到叶子节点。就截断这一条路径,从而加速DFS。

实际上,即使没有剪枝,DFS在从下层回退到上层的时候也是一个回溯的过程,通常这个时候某些变量的状态。

DFS通经常使用递归的形式实现比較直观。也能够用非递归。但通常须要借组辅助的数据结构(比方栈)来存储搜索路径。

以下通过leetcode上的两个题目,来展示DFS的应用:

题一  Combination Sum I,题目大意是这种:有一个正整数集合C,和一个目标数T(T也为正整数)。现从C中选出一些数,使其累加和恰好等于T(C中的每一个数都能够取若干次),求全部不同的取数方案。

比如:C={2,3,6,7}  T=7

res={  [7],

[2, 2, 3] }

class Solution {
public:
vector<vector<int> > combinationSum(vector<int> &candidates, int target) {
vector<int> tmp;
sort(candidates.begin(),candidates.end()); //先对C中候选数升序排序。为后面的剪枝做准备
sou=candidates;
dfs(tmp,target,0);
return res;
}
private:
vector<vector<int> > res; //保存最后结果
vector<int> sou;
int sum(vector<int> tmp){ //计算累加和
int r=0;
for(int i=0;i!=tmp.size();++i)
r+=tmp[i];
return r;
}
void dfs(vector<int> &tmp,int tag,int l){
if(l==sou.size()) //搜索到叶节点
return ;
int tot=sum(tmp);
if(tot==tag){
res.push_back(tmp);
return ;
}else if(tot>tag) //剪枝
return ;
else{
for(int i=l;i!=sou.size();++i){ //由于C中每一个数能够选多次,所以i从l開始,而不是l+1
tmp.push_back(sou[i]);
dfs(tmp,tag,i);
tmp.pop_back(); //回溯,恢复tmp状态
}
}
}
};

题二  Combination Sum II,与题一得差别是集合C中的每一个数最多仅仅能取一次,只是C中能够有反复的数。

比如:C={10,1,2,7,6,1,5}  T=8

res={ [1, 7]

                           [1, 2, 5]

                           [2, 6]

                           [1, 1, 6] }

题二能够採用与题一类似的方法。可是因为题二中的每一个数仅仅能取一次,所以dfs函数中的for循环,i应从l+1開始,表示取下一个数。但这样带来的问题是,结果中会出现反复的取数方案。拿上面的样例来分析:C中有两个1能够选,那第一个1和7是一种可选方案(1+7=8)。第二个1和7也是一种可选方案,依照上述算法。[1,7]会在结果中出现两次。当然能够对最后结果去重(假设用C++的话,sort->unique->erase能够实现)。

不幸的是,这样的解法会超时。解决超时的方案是不要将反复的方案增加到结果集中。也就避免了去重的工作。AC代码例如以下:

class Solution {
public:
vector<vector<int> > combinationSum2(vector<int> &candidates, int target) {
vector<int> tmp;
for(int i=0;i!=candidates.size();++i){ //mm是一个map,key为C中可取的数,value为该数有多少个
mm[candidates[i]]++;
}
for(map<int,int>::iterator it=mm.begin();it!=mm.end();++it){
for(int i=0;i<it->second;++i){
tmp.push_back(it->first);
dfs(tmp,target,it);
}
for(int i=0;i<it->second;++i){ //回溯。恢复tmp状态
tmp.pop_back();
}
}
return res;
}
private:
vector<vector<int> > res; //保存最后结果
map<int ,int > mm; int sum(vector<int> tmp){ //计算累加和
int r=0;
for(int i=0;i!=tmp.size();++i)
r+=tmp[i];
return r;
}
void dfs(vector<int> &tmp,int tag,map<int,int>::iterator it){
if(it==mm.end()) //搜索到叶节点
return ;
int tot=sum(tmp);
if(tot==tag){
res.push_back(tmp);
return ;
}else if(tot>tag) //剪枝
return ;
else{
for(++it;it!=mm.end();++it){
for(int i=0;i<it->second;++i){
tmp.push_back(it->first);
dfs(tmp,tag,it);
}
for(int i=0;i<it->second;++i){ //回溯,恢复tmp状态
tmp.pop_back();
}
}
}
}
};

关键代码:

for(++it;it!=mm.end();++it){
for(int i=0;i<it->second;++i){
tmp.push_back(it->first);
dfs(tmp,tag,it);
}
for(int i=0;i<it->second;++i){ //回溯,恢复tmp状态
tmp.pop_back();
}
}

外层循环表示依次从C中选取一种数。内层的第一个循环表示C中这个数能够取几次,内层的第二个循环表示,假设不选上一个数的话。要恢复状态。即把保存的上一个数删除(增加了多少个,就删除多少个)。

版权声明:本文博客原创文章。博客,未经同意,不得转载。

DFS-leetcode Combination Sum I/I I的更多相关文章

  1. 回溯法和DFS leetcode Combination Sum

    代码: 个人浅薄的认为DFS就是回溯法中的一种,一般想到用DFS我们脑中一般都有一颗解法树,然后去按照深度优先搜索去寻找解.而分支界限法则不算是回溯,无论其是采用队列形式的还是优先队列形式的分支界限法 ...

  2. [LeetCode]Combination Sum题解(DFS)

    Combination Sum Given a set of candidate numbers (C) (without duplicates) and a target number (T), f ...

  3. LeetCode Combination Sum III

    原题链接在这里:https://leetcode.com/problems/combination-sum-iii/ 题目: Find all possible combinations of k n ...

  4. LeetCode: Combination Sum I && II && III

    Title: https://leetcode.com/problems/combination-sum/ Given a set of candidate numbers (C) and a tar ...

  5. LeetCode: Combination Sum 解题报告

    Combination Sum Combination Sum Total Accepted: 25850 Total Submissions: 96391 My Submissions Questi ...

  6. [Leetcode] Combination Sum 系列

    Combination Sum 系列题解 题目来源:https://leetcode.com/problems/combination-sum/description/ Description Giv ...

  7. [LeetCode] Combination Sum IV 组合之和之四

    Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...

  8. [LeetCode] Combination Sum III 组合之和之三

    Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...

  9. [LeetCode] Combination Sum II 组合之和之二

    Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in ...

  10. [LeetCode] Combination Sum 组合之和

    Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C wher ...

随机推荐

  1. Mpmovieplayercontroller 黑屏

    MPMoviePlayerController * moviePlayer; 原因是:你在声明movieplayer的时候,声明成为了局部变量,与此同一时候你的project支持ARC,所以会出现黑屏 ...

  2. Android程序猿学习路径

    而一些工作,而不仅仅是通信毕业生,很多学生没有工作或熟练Android工作人员指导的情况下,,如何学习Android而提高Android更多关注的水平. 享: 1.Android知识 1.1.站点资源 ...

  3. HDU 4288 Coder (线段树)

    Coder 题目:http://acm.hdu.edu.cn/showproblem.php?pid=4288 题意:有三种类型的操作,(1)."add x",表示往集合里加入�数 ...

  4. Windows10微软在线账户与本地账户的切换方法

    Win10里面存在着两个账户,除了本地账户外,还有着一个微软在线账户,这个账户可以同步设置.日历等数据.不过对于大部分用户来说,本地账户已经足够我们使用了,那么这两个账户之间该如何切换呢? Win10 ...

  5. Heritage from father

    Problem Description Famous Harry Potter,who seemd to be a normal and poor boy,is actually a wizard.E ...

  6. [Django1.6]south于django1.6使用

    south在django1.6中的使用 django1.7中已经支持数据合并了,所以仅仅能在django1.4 1.5 1.6的版本号中使用south. south的主要作用就是做数据的合并,当我们在 ...

  7. SDL2来源分析3:渲染(SDL_Renderer)

    ===================================================== SDL源代码分析系列文章上市: SDL2源码分析1:初始化(SDL_Init()) SDL2 ...

  8. Android开发之合并文件的几种方式

    以下介绍合并文件的几种方式,并通过合并amr文件来举例介绍合并文件的详细流程.amr格式的文件头是6字节,所以在进行文件合并的时候要减去除第一个文件以外的其它文件的文件头. 注意:不同文件的文件头是不 ...

  9. 华丽的网上突出代码组件CodeMirror

    农民之间的代码懒惰性质:愚公绝不能过夜.一劳永逸永远不知疲倦!这是一个代码示例 动态配置,在不同的场景抽象为常见的配置逻辑加,这使得有可能"为一个全球性的代码.代码做搬运工",更糟 ...

  10. OC本学习笔记Foundatio框架集

        一.OC数组         OC数组是一个类,它也分不可变数组NSArray和可变数组NSMutableArray. 1➣不可变数组的创建 // 创建一个不可变数组.元素为一个OC字符串对象 ...