深度优先搜索(DFS)它是一个搜索算法。第一次接触DFS它应该是一个二进制树的遍历内部,二叉树预订、序和后序实际上属于深度遍历-first。在本质上,深度优先搜索,遍历中则看到了更纯正的深度优先搜索算法。

通常。我们将回溯法和DFS等同看待。能够用一个等式表示它们的关系:回溯法=DFS+剪枝。所以回溯法是DFS的延伸。其目的在于通过剪枝使得在深度优先搜索过程中假设满足了回溯条件不必找到叶子节点。就截断这一条路径,从而加速DFS。

实际上,即使没有剪枝,DFS在从下层回退到上层的时候也是一个回溯的过程,通常这个时候某些变量的状态。

DFS通经常使用递归的形式实现比較直观。也能够用非递归。但通常须要借组辅助的数据结构(比方栈)来存储搜索路径。

以下通过leetcode上的两个题目,来展示DFS的应用:

题一  Combination Sum I,题目大意是这种:有一个正整数集合C,和一个目标数T(T也为正整数)。现从C中选出一些数,使其累加和恰好等于T(C中的每一个数都能够取若干次),求全部不同的取数方案。

比如:C={2,3,6,7}  T=7

res={  [7],

[2, 2, 3] }

class Solution {
public:
vector<vector<int> > combinationSum(vector<int> &candidates, int target) {
vector<int> tmp;
sort(candidates.begin(),candidates.end()); //先对C中候选数升序排序。为后面的剪枝做准备
sou=candidates;
dfs(tmp,target,0);
return res;
}
private:
vector<vector<int> > res; //保存最后结果
vector<int> sou;
int sum(vector<int> tmp){ //计算累加和
int r=0;
for(int i=0;i!=tmp.size();++i)
r+=tmp[i];
return r;
}
void dfs(vector<int> &tmp,int tag,int l){
if(l==sou.size()) //搜索到叶节点
return ;
int tot=sum(tmp);
if(tot==tag){
res.push_back(tmp);
return ;
}else if(tot>tag) //剪枝
return ;
else{
for(int i=l;i!=sou.size();++i){ //由于C中每一个数能够选多次,所以i从l開始,而不是l+1
tmp.push_back(sou[i]);
dfs(tmp,tag,i);
tmp.pop_back(); //回溯,恢复tmp状态
}
}
}
};

题二  Combination Sum II,与题一得差别是集合C中的每一个数最多仅仅能取一次,只是C中能够有反复的数。

比如:C={10,1,2,7,6,1,5}  T=8

res={ [1, 7]

                           [1, 2, 5]

                           [2, 6]

                           [1, 1, 6] }

题二能够採用与题一类似的方法。可是因为题二中的每一个数仅仅能取一次,所以dfs函数中的for循环,i应从l+1開始,表示取下一个数。但这样带来的问题是,结果中会出现反复的取数方案。拿上面的样例来分析:C中有两个1能够选,那第一个1和7是一种可选方案(1+7=8)。第二个1和7也是一种可选方案,依照上述算法。[1,7]会在结果中出现两次。当然能够对最后结果去重(假设用C++的话,sort->unique->erase能够实现)。

不幸的是,这样的解法会超时。解决超时的方案是不要将反复的方案增加到结果集中。也就避免了去重的工作。AC代码例如以下:

class Solution {
public:
vector<vector<int> > combinationSum2(vector<int> &candidates, int target) {
vector<int> tmp;
for(int i=0;i!=candidates.size();++i){ //mm是一个map,key为C中可取的数,value为该数有多少个
mm[candidates[i]]++;
}
for(map<int,int>::iterator it=mm.begin();it!=mm.end();++it){
for(int i=0;i<it->second;++i){
tmp.push_back(it->first);
dfs(tmp,target,it);
}
for(int i=0;i<it->second;++i){ //回溯。恢复tmp状态
tmp.pop_back();
}
}
return res;
}
private:
vector<vector<int> > res; //保存最后结果
map<int ,int > mm; int sum(vector<int> tmp){ //计算累加和
int r=0;
for(int i=0;i!=tmp.size();++i)
r+=tmp[i];
return r;
}
void dfs(vector<int> &tmp,int tag,map<int,int>::iterator it){
if(it==mm.end()) //搜索到叶节点
return ;
int tot=sum(tmp);
if(tot==tag){
res.push_back(tmp);
return ;
}else if(tot>tag) //剪枝
return ;
else{
for(++it;it!=mm.end();++it){
for(int i=0;i<it->second;++i){
tmp.push_back(it->first);
dfs(tmp,tag,it);
}
for(int i=0;i<it->second;++i){ //回溯,恢复tmp状态
tmp.pop_back();
}
}
}
}
};

关键代码:

for(++it;it!=mm.end();++it){
for(int i=0;i<it->second;++i){
tmp.push_back(it->first);
dfs(tmp,tag,it);
}
for(int i=0;i<it->second;++i){ //回溯,恢复tmp状态
tmp.pop_back();
}
}

外层循环表示依次从C中选取一种数。内层的第一个循环表示C中这个数能够取几次,内层的第二个循环表示,假设不选上一个数的话。要恢复状态。即把保存的上一个数删除(增加了多少个,就删除多少个)。

版权声明:本文博客原创文章。博客,未经同意,不得转载。

DFS-leetcode Combination Sum I/I I的更多相关文章

  1. 回溯法和DFS leetcode Combination Sum

    代码: 个人浅薄的认为DFS就是回溯法中的一种,一般想到用DFS我们脑中一般都有一颗解法树,然后去按照深度优先搜索去寻找解.而分支界限法则不算是回溯,无论其是采用队列形式的还是优先队列形式的分支界限法 ...

  2. [LeetCode]Combination Sum题解(DFS)

    Combination Sum Given a set of candidate numbers (C) (without duplicates) and a target number (T), f ...

  3. LeetCode Combination Sum III

    原题链接在这里:https://leetcode.com/problems/combination-sum-iii/ 题目: Find all possible combinations of k n ...

  4. LeetCode: Combination Sum I && II && III

    Title: https://leetcode.com/problems/combination-sum/ Given a set of candidate numbers (C) and a tar ...

  5. LeetCode: Combination Sum 解题报告

    Combination Sum Combination Sum Total Accepted: 25850 Total Submissions: 96391 My Submissions Questi ...

  6. [Leetcode] Combination Sum 系列

    Combination Sum 系列题解 题目来源:https://leetcode.com/problems/combination-sum/description/ Description Giv ...

  7. [LeetCode] Combination Sum IV 组合之和之四

    Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...

  8. [LeetCode] Combination Sum III 组合之和之三

    Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...

  9. [LeetCode] Combination Sum II 组合之和之二

    Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in ...

  10. [LeetCode] Combination Sum 组合之和

    Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C wher ...

随机推荐

  1. COM模块三---根的形成和注册代理server(Building and Registering a Proxy DLL)

    Prerequisite:C++ 程序员,熟windows计划,熟Win32 Dll,了解windows注册表. 笔者:割者 上一篇文章中,我们定义了COM接口.通过编译生成了四个文件,本文使用这四个 ...

  2. 在C#环境中动态调用IronPython脚本(二)

    一.Python数据类型与C#数据类型的对应 Python中数据类型中的简单类型,例如int,float,string可以对应到C#环境中的int32,double,string,这些对应比较直观,P ...

  3. Swift语法学习之 类和结构体

    类和结构体 本页包括内容: 类和结构体对照 结构体和枚举是值类型 类是引用类型 类和结构体的选择 集合(collection)类型的赋值与复制行为 与其他编程语言所不同的是,Swift 并不要求你为自 ...

  4. jquery省市区三级联动

    jquery省市区三级联动(数据来源国家统计局官网)内附源码下载 很久很久没有写博了. 今天更新了项目的省市区三级联动数据,更新后最新的海南三沙都有,分享给所有需要的小伙伴们... JQUERY + ...

  5. linux 脚本測试网络速度

    example: ./netspeed eth0 1 #!/bin/bash 2   3 INTERVAL="1"  # update interval in seconds   ...

  6. lua、groovy嵌入到java中的性能对比(转)

    lua和groovy都是可以嵌入到java中的脚本语言.lua以高性能著称,与C/C++在游戏开放中有较多使用,groovy是一个基于Java虚拟机(JVM)的敏捷动态语言,在jvm下有着不错的性能. ...

  7. Java程序猿从底层到CTO的技术路线图

    首先.附一张图片展示所在各个阶段的工作职能: 其次.文字型描写叙述所在各个阶段的工作职能: Java程序猿 高级特性 反射.泛型.凝视符.自己主动装箱和拆箱.枚举类.可变參数.可变返回类型.增强循环. ...

  8. Android - 支持不同的设备 - 支持不同的语言

    把app的字符串放到另外一个文件中是一个好习惯.Android用android工程中的资源文件夹让这件事变的很简单. 如果使用Android SDK Tools创建工程,这个工具会在工程的根目录下创建 ...

  9. OAuth在WebApi

    OAuth在WebApi中的使用,前后台分离的调用方式 前段时间由于公司架构服务层向WebApi转换,就研究了OAuth在WebApi中的使用,这中间遇到了很多坑,在此记录一下OAuth的正确使用方式 ...

  10. Team Foundation Server 2013 Update 3 下载激活

    http://www.microsoft.com/zh-cn/download/details.aspx?id=43728 支持的操作系统 Windows 7 Service Pack 1, Wind ...