题目大意:给出n个数字a[],将a[]分解为质因子(保证分解所得的质因子不大于2000),任选一个或多个质因子,使其乘积为完全平方数。求其方法数。

学长学姐们比赛时做的,当时我一脸懵逼的不会搞……所以第二天上午花了一上午学习了一下线性代数。

题目思路:

任选一个或多个质因子,起乘积为完全数m,因为组成它的均为素数,假设组成m的素数的种类为n,那么这n类素数中每类素数的个数应为偶数。

可设:a[i][j]=0代表第i种素数可在a[j]中分离出的个数为偶数,a[i][j]=1代表第i种素数可在a[j]中分离出的个数为奇数数。

          b[i]=1代表选择这类素数,b[i]=0代表不选择这类素数。

列出线性方程组:

a11x1+a12x2+...+a1nxn=0

a21x1+a22x2+...+a2nxn=0

...

an1x1+an2x2+...+annxn=0

求解的个数 ans

转化为矩阵形式:

矩阵A=

a11 a12 a13 …………a1n

a21 a22 a23 …………a2n

……………………………………

……………………………………

an1 an2 an3 …………ann

通过初等变换可将矩阵A换成类似下面矩阵B的形式

a11 a12 a13 ……a1n

0     a22 a23 ……a2n

0       0    a33……a3n

0       0    0    ……arn

再将矩阵B转化成线性方程组 可求出最后一组方程的解,倒着往回求可求出所有方程解

可解出的方程组共 r 个,由秩的定义可知 r等矩阵A的秩

由定理:

对于n元齐次线性方程组如果r<n,则方程组含n-r个自由未知量。

解的个数ans=2^(n-r)-1(减去全0解)

具体操作:

#include<cstdio>
#include<stdio.h>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<vector>
#include<queue>
#define INF 0x3f3f3f
#define MAX 2105
#define MOD 1000000007 using namespace std; long long c[MAX][],p[MAX],v[MAX],a[MAX],cnt,n;//c存矩阵,p存素数表,cnt代表素数的个数 void MakeTab()//打素数表
{
int i,j;
memset(v,,sizeof(v));
memset(p,,sizeof(p));
cnt=;
for(i=; i<=; i++)
{
if(!v[i])
{
p[++cnt]=i;
for(j=i; j<=; j+=i)
{
v[j]=;
}
}
}
} int Rank()//计算秩
{
int i,j,k,r,u;
i=;
j=;
while(i<=cnt && j<=n)
{
r=i;
while(!c[r][j] && r<=cnt)
r++;
if(c[r][j])
{
swap(c[i],c[r]);//如果发现了第r行第j列为1,就讲r行和i行行互换(初等行变换)
for(u=i+; u<=cnt; u++)
{
if(c[u][j])
{
for(k=i; k<=n; k++)
{
c[u][k]=c[u][k]^c[i][k];//每找到一个未知数就对其进行亦或处理,去掉系数c[i][k]
} }
}
i++;
}
j++;
}
return i;
} int main()
{
MakeTab();
int i,j,cns=,T;
scanf("%d",&T);
while(T--)
{
scanf("%lld",&n);
memset(c,,sizeof(c));
for(i=; i<=n; i++)
{
scanf("%lld",&a[i]);
} for(i=; i<=n; i++)
{
for(j=; j<=cnt; j++)
{
long long num=a[i];
if(num%p[j]==)
{
while(num%p[j]==)
{
num/=p[j];
c[j][i]=c[j][i]^;
}
}
}
} long long k=(n-Rank());
long long ans=;
for(i=; i<=k; i++)
ans=(ans*)%MOD;
printf("Case #%d:\n",cns++);
printf("%lld\n",ans-);//去掉全0的解
}
return ;
}

【HDU 5833】Zhu and 772002(异或方程组高斯消元讲解)的更多相关文章

  1. hdu 5833 Zhu and 772002 异或方程组高斯消元

    ccpc网赛卡住的一道题 蓝书上的原题 但是当时没看过蓝书 今天又找出来看看 其实也不是特别懂 但比以前是了解了一点了 主要还是要想到构造异或方程组 异或方程组的消元只需要xor就好搞了 数学真的是硬 ...

  2. 【HDU 5833】Zhu and 772002(异或方程组高斯消元)

    300个最大质因数小于2000的数,选若干个它们的乘积为完全平方数有多少种方案. 合法方案的每个数的质因数的个数的奇偶值异或起来为0. 比如12=2^2*3,对应的奇偶值为01(2的个数是偶数为0,3 ...

  3. 3364 Lanterns (异或方程组高斯消元)

    基本思路.首先构造一个n*(m+1)的矩阵,同时标记一个行数row,row从零开始,然后找出每一列第一个非零的数,和第row行互换, 然后对row到n行,异或运算.最终的结果为2^(m-row) #i ...

  4. hdu 5833 Zhu and 772002 ccpc网络赛 高斯消元法

    传送门:hdu 5833 Zhu and 772002 题意:给n个数,每个数的素数因子不大于2000,让你从其中选则大于等于1个数相乘之后的结果为完全平方数 思路: 小于等于2000的素数一共也只有 ...

  5. HDU 5833 Zhu and 772002

    HDU 5833 Zhu and 772002 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/ ...

  6. HDU 5833 Zhu and 772002 (高斯消元)

    Zhu and 772002 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5833 Description Zhu and 772002 are b ...

  7. hdu 5833 Zhu and 772002 高斯消元

    Zhu and 772002 Problem Description Zhu and 772002 are both good at math. One day, Zhu wants to test ...

  8. HDU 2262 Where is the canteen 期望dp+高斯消元

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2262 Where is the canteen Time Limit: 10000/5000 MS ...

  9. 【HDU 3949】 XOR (线性基,高斯消元)

    XOR Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

随机推荐

  1. HTML通过事件传递参数到js 二 event

    原文链接http://blog.sina.com.cn/s/blog_8a18c33d010172pp.html event用例: <!DOCTYPE html><html>& ...

  2. 关于R语言的一些编程经验

    一个晚上写出一个能用的程序…… 来说说遇见的问题吧 zqw<-read.table(file = "c:/data/zqw.txt") zqw<-data.frame( ...

  3. WebSocket的原理,以及和Http的关系

    一.WebSocket是HTML5中的协议,支持持久连接:而Http协议不支持持久连接. 首先HTMl5指的是一系列新的API,或者说新规范,新技术.WebSocket是HTML5中新协议.新API. ...

  4. Spring入门学习(二)三种实例化bean的方法

    前面的哪一种就是通过构造函数来实例化对象 下面我们可能用到工厂方法来视力话对象,这样我们的配置文件又该怎么配置呢 <bean name="service2" class=&q ...

  5. MVC5 Entity Framework学习之创建复杂的数据模型

    目录(?)[-] 使用属性来自定义数据模型 DataType属性 StringLength属性 Column 属性 完成对Student实体的更改 Required 属性 Display 属性 Ful ...

  6. tomcat容器启动的启动过程(三)

    Catalina的start方法 /** * Start a new server instance. */ public void start() { if (server == null) { l ...

  7. There was a problem parsing the package(android)

    android phone when you install the application there will inevitably be "a problem parsing the ...

  8. SpringMvc之java文件下载

    首先强调,需要下载的文件只能放在项目中的webapp下 1.页面的一个超链接,链接到controller <a href="<%=path%>/download" ...

  9. Understanding Neural Networks Through Deep Visualization

    当数据一层一层通过更多的卷积层时,你可以得到的特征图像代表的特征就会更加的复杂. 在网络的最后,你也许可以得到一个抽象的物体.如果你想通过可视化方法在卷积神经网络中看到更多的信息.这里有一个工具方便你 ...

  10. 搭建Linux3.4.2内核编辑环境

    (1)准备工作:1. 准备虚拟机2.安装工具链sudo tar xjf arm-linux-gcc-4.3.2.tar.bz2 -C /设置环境变量:sudo vi /etc/environment ...