DP:

DP[len][k][i][j] 再第len位,第一个数len位为i,第二个数len位为j,和的第len位为k

每一位能够从后面一位转移过来,能够进位也能够不进位

A Famous Equation

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 500    Accepted Submission(s): 147

Problem Description
Mr. B writes an addition equation such as 123+321=444 on the blackboard after class. Mr. G removes some of the digits and makes it look like “1?3+??1=44?”. Here “?” denotes removed digits. After Mr. B realizes some digits are missing, he wants to recover them.
Unfortunately, there may be more than one way to complete the equation. For example “1?

3+??

1=44?” can be completed to “123+321=444” , “143+301=444” and many other possible solutions. Your job is to determine the number of different possible solutions.

 
Input
Each test case describes a single line with an equation like a+b=c which contains exactly one plus sign “+” and one equal sign “=” with some question mark “?” represent missing digits. You may assume a, b and c are non-negative integers, and the length of each
number is no more than 9. In the other words, the equation will contain three integers less than 1,000,000,000.
 
Output
For each test case, display a single line with its case number and the number of possible solutions to recover the equation.
 
Sample Input
7+1?=1?
?1+? 1=22
 
Sample Output
Case 1: 3
Case 2: 1
Hint
There are three solutions for the first case:
7+10=17, 7+11=18, 7+12=19
There is only one solution for the second case:
11+11=22
Note that 01+21=22 is not a valid solution because extra leading zeros are not allowed.
 
Source
 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <stack> using namespace std; typedef long long int LL; char cpp[200];
int a[200],len1,b[200],len2,c[200],len3;
LL dp[20][20][20][20]; int main()
{
int cas=1;
while(cin>>cpp)
{
len1=len2=len3=0;
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
memset(c,0,sizeof(c));
int n=strlen(cpp);
int i; stack<char> stk;
for(i=0;i<n;i++)
{
if(cpp[i]=='+')
{
while(!stk.empty())
{
char c=stk.top(); stk.pop();
if(c!='? ') a[len1++]=c-'0';
else a[len1++]=-1;
}
i++;
break;
}
stk.push(cpp[i]);
}
for(;i<n;i++)
{
if(cpp[i]=='=')
{
while(!stk.empty())
{
char c=stk.top(); stk.pop();
if(c!='? ') b[len2++]=c-'0';
else b[len2++]=-1;
}
i++;
break;
}
stk.push(cpp[i]);
}
for(;i<n;i++) stk.push(cpp[i]);
while(!stk.empty())
{
char cc=stk.top(); stk.pop();
if(cc!='?') c[len3++]=cc-'0';
else c[len3++]=-1;
} for(int i=len1-1;i>0;i--) if(a[i]==0) len1--; else break;
for(int i=len2-1;i>0;i--) if(b[i]==0) len2--; else break;
for(int i=len3-1;i>0;i--) if(c[i]==0) len3--; else break; memset(dp,0,sizeof(dp)); ///len==0
for(int i=0;i<=9;i++)
{
if(a[0]==-1||a[0]==i)
for(int j=0;j<=9;j++)
{
if(b[0]==-1||b[0]==j)
for(int k=0;k<=9;k++)
if(c[0]==-1||c[0]==k)
{
if(k==(i+j)%10)
dp[0][k][i][j]=1;
}
}
}
///len=1...
for(int len=1;len<len3;len++)
{
for(int i=0;i<=9;i++)
{
if(len==len1-1&&i==0) continue;
if(len>=len1&&i!=0) continue;
if(a[len]==-1||a[len]==i)
for(int j=0;j<=9;j++)
{
if(len==len2-1&&j==0) continue;
if(len>=len2&&j!=0) continue;
if(b[len]==-1||b[len]==j)
for(int k=0;k<=9;k++)
{
if(len==len3-1&&k==0) continue;
if(((i+j)%10!=k)&&((i+j+1)%10!=k))
continue;
if(c[len]==-1||c[len]==k)
{
///没有进位
if((i+j)%10==k)
{
for(int ii=0;ii<=9;ii++)
for(int jj=0;jj<=9;jj++)
for(int kk=0;kk<=9;kk++)
{
if((ii+jj==kk)||(ii+jj+1==kk))
dp[len][k][i][j]+=dp[len-1][kk][ii][jj];
}
}
///有进位
if((i+j+1)%10==k)
{
for(int ii=0;ii<=9;ii++)
for(int jj=0;jj<=9;jj++)
for(int kk=0;kk<=9;kk++)
{
if(((ii+jj>=10)&&(ii+jj)%10==kk)||((ii+jj+1>=10)&&(ii+jj+1)%10==kk))
dp[len][k][i][j]+=dp[len-1][kk][ii][jj];
}
}
}
}
}
}
}
LL ans=0;
int mx=max(len1,max(len2,len3));
for(int i=0;i<=9;i++)
for(int j=0;j<=9;j++)
for(int k=0;k<=9;k++)
if((i+j==k)||(i+j+1==k))
{
if(mx==1&&i+j!=k) continue;
ans+=dp[mx-1][k][i][j];
}
cout<<"Case "<<cas++<<": "<<ans<<endl;
memset(cpp,0,sizeof(cpp));
}
return 0;
}

HDOJ 4249 A Famous Equation DP的更多相关文章

  1. HDU 4249 A Famous Equation(数位DP)

    题目链接:点击打开链接 思路:用d[i][a][b][c][is]表示当前到了第i位, 三个数的i位各自是a,b,c, 是否有进位 , 的方法数. 细节參见代码: #include<cstdio ...

  2. HDU-4249-A Famous Equation(DP)

    Problem Description Mr. B writes an addition equation such as 123+321=444 on the blackboard after cl ...

  3. HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解)

    HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解) 题意分析 要先排序,在做01背包,否则不满足无后效性,为什么呢? 等我理解了再补上. 代码总览 #in ...

  4. HDOJ(HDU).2546 饭卡(DP 01背包)

    HDOJ(HDU).2546 饭卡(DP 01背包) 题意分析 首先要对钱数小于5的时候特别处理,直接输出0.若钱数大于5,所有菜按价格排序,背包容量为钱数-5,对除去价格最贵的所有菜做01背包.因为 ...

  5. HDOJ(HDU).2602 Bone Collector (DP 01背包)

    HDOJ(HDU).2602 Bone Collector (DP 01背包) 题意分析 01背包的裸题 #include <iostream> #include <cstdio&g ...

  6. HDOJ(HDU).1058 Humble Numbers (DP)

    HDOJ(HDU).1058 Humble Numbers (DP) 点我挑战题目 题意分析 水 代码总览 /* Title:HDOJ.1058 Author:pengwill Date:2017-2 ...

  7. HDOJ(HDU).1003 Max Sum (DP)

    HDOJ(HDU).1003 Max Sum (DP) 点我挑战题目 算法学习-–动态规划初探 题意分析 给出一段数字序列,求出最大连续子段和.典型的动态规划问题. 用数组a表示存储的数字序列,sum ...

  8. HDOJ 1501 Zipper 【简单DP】

    HDOJ 1501 Zipper [简单DP] Problem Description Given three strings, you are to determine whether the th ...

  9. HDOJ 1159 Common Subsequence【DP】

    HDOJ 1159 Common Subsequence[DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...

随机推荐

  1. jquery mobile -role

    jquery mobile -role - cc_jony - 博客园 jquery mobile -role   data-page 页面 data-header 页面的头部 data-conten ...

  2. hdu4722 Good Numbers

    Good Numbers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...

  3. MVC3和MVC4中CRUD操作

    MVC3中EF实现的CRUD操作 public class HomeController : Controller { // // GET: /Home/ CarModelContainer db = ...

  4. Swift - 导航条(UINavigationBar)的使用

    与导航控制器(UINavigationController)同时实现导航条和页面切换功能不同. 导航条(UINavgationBar)可以单独使用,添加至任何的UIView中.UINavigation ...

  5. Delphi的String内存结构(够清楚) good

    变量s的内存结构为(字符串编码)A8 03 (字符宽度)01 00 (引用计数)FF FF FF FF (字符串长度)0A 00 00 00 (实际内容)31 32 33 34 35 36 37 38 ...

  6. 与众不同 windows phone (10) - Push Notification(推送通知)之推送 Tile 通知, 推送自定义信息

    原文:与众不同 windows phone (10) - Push Notification(推送通知)之推送 Tile 通知, 推送自定义信息 [索引页][源码下载] 与众不同 windows ph ...

  7. jquery ajax验证用户名是否存在(后台spring mvc)

    controller层 @ResponseBody @RequestMapping(value = "/user/isExist", produces = "applic ...

  8. UVa 11371 - Number Theory for Newbies

    題目:給你一個數字n.將裡面每位的數又一次組合形成a,b.使得a-b最大且是9的倍數. 分析:數論. 題目要求a,b和n的位數同样,不能有前導0. 定理1:交換一個數字中的某兩個位的數,形成的新數組和 ...

  9. 程序猿的量化交易之路(26)--Cointrader之Listing挂牌实体(13)

    转载须注明出处:http://blog.csdn.net/minimicall? viewmode=contents,http://cloudtrade.top Listing:挂牌. 比方某仅仅股票 ...

  10. Python之常用模块(待更新)

    模块,用一砣代码实现了某个功能的代码集合. 类似于函数式编程和面向过程编程,函数式编程则完成一个功能,其他代码用来调用即可,提供了代码的重用性和代码间的耦合.而对于一个复杂的功能来,可能需要多个函数才 ...