本题链接 : http://poj.org/problem?id=3268

  题目大意:牛们要去聚会,输入N = 顶点数(牛场);M = 边(路)的数目; X = 终点 (聚会点)。问题:求来回时间的最大值。

Description:

 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

Input:

Line 1: Three space-separated integers, respectively: NM, and X 
Lines 2..M+1: Line i+1 describes road i with three space-separated integers: AiBi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.

Output:

Line 1: One integer: the maximum of time any one cow must walk.
4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3

Sample Output:

10
 
 解题思路:因为本题是单向的,所以在做的时候可以做一个正向图和一个反向图,分别求解来回的时间,然后找和的最大值。

这里是我的代码:
 #include <cstring>
#include <iostream>
#define INF 9999999
using namespace std; bool used[];
int V, E;
const int maxn = ; void dijkstra (int s, int cost[][], int d[]) {
fill (d, d + V + , INF);
fill (used,used + V + ,false);
d[s] = ;
while (true) {
int v = -;
for (int u = ; u <= V; u++) {
if (!used[u] && (v == - || d[u] < d[v])) v = u;
}
if (v == -) break;
used[v] = true;
for (int u = ; u <= V; ++u) {
if (d[u] > d[v] + cost[v][u]) {
d[u] = d[v] + cost[v][u];
}
}
}
} int cost[maxn][maxn];
int rcost[maxn][maxn]; int main () {
int d[maxn];
int rd[maxn];
int x, y, w;
int sum[maxn];
int S;
cin >> V >> E >> S; for (int i = ;i <= V; ++i)
for (int j = ; j <= V; ++j)
rcost[i][j] = cost[i][j] = INF; for (int i = ; i < E; ++i) {
cin >> x >> y >> w;
rcost[y][x] = cost[x][y] = w;
} dijkstra(S, cost, d);//分别计算最短路径
dijkstra(S, rcost, rd); for (int i = ; i <= V; ++i)//求和
sum[i] = d[i] + rd[i]; int maxnum = sum[];
for (int i = ; i <= V; ++i)///找最大值
if (sum[i] > maxnum)
maxnum = sum[i]; cout << maxnum << endl; return ;
}

    欢迎码友评论,一起成长。

<poj - 3268> Silver Cow Party 牛のpart 最短路径问题的更多相关文章

  1. POJ 3268 Silver Cow Party (最短路径)

    POJ 3268 Silver Cow Party (最短路径) Description One cow from each of N farms (1 ≤ N ≤ 1000) convenientl ...

  2. POJ 3268 Silver Cow Party 最短路—dijkstra算法的优化。

    POJ 3268 Silver Cow Party Description One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbe ...

  3. POJ 3268 Silver Cow Party (双向dijkstra)

    题目链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total ...

  4. POJ 3268 Silver Cow Party 最短路

    原题链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total ...

  5. POJ 3268 Silver Cow Party 最短路径+矩阵转换

    Silver Cow Party Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other) T ...

  6. POJ 3268 Silver Cow Party (Dijkstra)

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13982   Accepted: 6307 ...

  7. POJ 3268——Silver Cow Party——————【最短路、Dijkstra、反向建图】

    Silver Cow Party Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Su ...

  8. 图论 ---- spfa + 链式向前星 ---- poj 3268 : Silver Cow Party

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 12674   Accepted: 5651 ...

  9. poj 3268 Silver Cow Party

                                                                                                       S ...

随机推荐

  1. Unity3d物体模型(实现旋转缩放平移自动旋转)

    基本功能实现:物体通过鼠标左键上下移动,中间键缩放.右键旋转,30秒没操作,物体自动旋转 实例代码: using UnityEngine; using System.Collections; publ ...

  2. TOGAF企业连续体和工具之企业连续体构成及架构划分

    TOGAF企业连续体和工具之企业连续体构成及架构划分 又回头看了之前文章的评论,本人也同样感慨这些文章的确像政治课本般的虚无缥缈,所以对费力看完却觉得无从下手的看官致以诚挚的歉意和理解,因为这个问题也 ...

  3. YSlow的性能测试提示

    Add an Expires or a Cache-Control Header tag: server There are two aspects to this rule: For static ...

  4. javascript中的promise和deferred:实践(二)

    javascript中的promise和deferred:实践(二) 介绍: 在第一节呢,我花了大量的时间来介绍promises和deferreds的理论.现在呢,我们来看看jquery中的promi ...

  5. spring.net AOP通知类型

    上篇介绍了spring.net AOP的基本实现,其中有说到通知类型,首先在这里补充解释一下.最后出一个异常通知的实例,因为他的实现和别的通知有些不一样. 1.拦截环绕通知:在Spring中最基础的通 ...

  6. launch failed.Binary not found

    1.在eclipse官网中下载已经集成了CDT的eclipse.(http://www.eclipse.org/downloads/download.php?file=/technology/epp/ ...

  7. Cocos2d-精灵的几个常识

    性能考虑 该部分是总结的cocos2d的在线文档 1)如果有每个帧有25个以下的精灵需要更新,可以直接使用精灵 class TLayer(cocos.layer.Layer):     is_even ...

  8. 内核操作系统Linux内核变迁杂谈——感知市场的力量

    本篇文章个人在青岛游玩的时候突然想到的...今天就有想写几篇关于内核操作系统的博客,所以回家到以后就奋笔疾书的写出来发表了 Jack:什么是操作系统? 我:你买了一台笔记本,然后把整块硬盘彻底格式化, ...

  9. java 子类、父类中静态代码块、字段,非静态代码块、字段以及构造函数的初始化顺序和次数

    一个类中的数据初始化顺序是面试官非常喜欢出的面试题之一,本文用一个实例来介绍java中子类.父类中静态代码块.字段,非静态代码块.字段以及构造函数的执行顺序和次数. 一.包结构

  10. Tungsten Replicator学习总结

    之前基于Tungsten Replicator实现了内部使用的分布式数据库的数据迁移工具,此文为当时调研Tungsten Replicator时的学习心得,创建于2015.7.22. 1 概述 1.1 ...