Digit Recognizer

手写体数字识别  MNIST数据集

本赛 train 42000样例 test 28000样例,原始MNIST是 train 60000 test 10000

我分别用 Logistic Regression/ 784-200-200-10的Sparse AutoEncoder/Convolution AutoEncoder刷了下

===============方法一、 One-Vs-All 的Logistic Regression===================

%%
ccc
load digitData %%
input_layer_size = 28*28;
num_ys = 10; X = train_x;
[~,y] = max(train_y, [], 2); lambda = 0.1;
lambda = 100;
[all_theta] = oneVsAll(X, y, num_ys, lambda); %% ================ Part: Predict for One-Vs-All ================
% After ...
pred = predictOneVsAll(all_theta, X);
fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100); %% ============== 计算test准确度(test_y 是基于KNN的 只作为参考)
[~,test_y] = max(test_y, [], 2); pred = predictOneVsAll(all_theta, test_x);
fprintf('\nTest Set Accuracy: %f\n', mean(double(pred == test_y)) * 100); %% write csv file
pred(pred==10) = 0;
M = [(1:length(pred))' pred(:)];
csvwrite('LiFeiteng0824.csv',M)

===============方法二、 784-200-200-10的Sparse AutoEncoder ===================

%% STEP 0: Here we provide the relevant parameters values that will
tic inputDim = 28;
inputSize = 28 * 28;
numClasses = 10;
hiddenSizeL1 = 200; % Layer 1 Hidden Size
hiddenSizeL2 = 200; % Layer 2 Hidden Size
sparsityParam = 0.1; % desired average activation of the hidden units.
% (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",
% in the lecture notes).
lambda = 3e-3; % weight decay parameter
beta = 3; % weight of sparsity penalty term
maxIter = 100; %% STEP 1: Load data
load digitData
trainData = train_x';
[~, trainLabels] = max(train_y, [], 2);
%%% 增加数据 %%% ZCA白化 像素值范围变化 []
% trainData = ZCAWhite(trainData); %% STEP 2: Train the first sparse autoencoder
sae1Theta = initializeParameters(hiddenSizeL1, inputSize); options.Method = 'lbfgs';
options.maxIter = 200; % Maximum number of iterations of L-BFGS to run
options.display = 'on';
[sae1OptTheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ...
inputSize, hiddenSizeL1, ...
lambda, sparsityParam, ...
beta, trainData), ...
sae1Theta, options); % -------------------------------------------------------------------------
W1 = reshape(sae1OptTheta(1:hiddenSizeL1*inputSize), hiddenSizeL1, inputSize);
display_network(W1', 12); %% STEP 2: Train the second sparse autoencoder
[sae1Features] = feedForwardAutoencoder(sae1OptTheta, hiddenSizeL1, ...
inputSize, trainData); % Randomly initialize the parameters
sae2Theta = initializeParameters(hiddenSizeL2, hiddenSizeL1); options.Method = 'lbfgs';
options.maxIter = 100; % Maximum number of iterations of L-BFGS to run
options.display = 'on'; [sae2OptTheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ...
size(sae1Features,1), hiddenSizeL2, ...
lambda, sparsityParam, ...
beta, sae1Features), ...
sae2Theta, options); %% STEP 3: Train the softmax classifier [sae2Features] = feedForwardAutoencoder(sae2OptTheta, hiddenSizeL2, ...
hiddenSizeL1, sae1Features); % Randomly initialize the parameters
saeSoftmaxTheta = 0.005 * randn(hiddenSizeL2 * numClasses, 1); lambda = 1e-4;
options.maxIter = 200;
softmaxModel = softmaxTrain(hiddenSizeL2, numClasses, lambda, ...
sae2Features, trainLabels, options);
% -------------------------------------------------------------------------
saeSoftmaxOptTheta = softmaxModel.optTheta(:); %% STEP 5: Finetune softmax model % Implement the stackedAECost to give the combined cost of the whole model
% then run this cell. % Initialize the stack using the parameters learned
stack = cell(2,1);
stack{1}.w = reshape(sae1OptTheta(1:hiddenSizeL1*inputSize), ...
hiddenSizeL1, inputSize);
stack{1}.b = sae1OptTheta(2*hiddenSizeL1*inputSize+1:2*hiddenSizeL1*inputSize+hiddenSizeL1);
stack{2}.w = reshape(sae2OptTheta(1:hiddenSizeL2*hiddenSizeL1), ...
hiddenSizeL2, hiddenSizeL1);
stack{2}.b = sae2OptTheta(2*hiddenSizeL2*hiddenSizeL1+1:2*hiddenSizeL2*hiddenSizeL1+hiddenSizeL2); % Initialize the parameters for the deep model
[stackparams, netconfig] = stack2params(stack);
stackedAETheta = [ saeSoftmaxOptTheta ; stackparams ]; options.Method = 'lbfgs';
options.maxIter = 400; % Maximum number of iterations of L-BFGS to run
options.display = 'on'; [stackedAEOptTheta, cost] = minFunc( @(p) stackedAECost(p, ...
hiddenSizeL2 , hiddenSizeL2, ...
numClasses, netconfig, ...
lambda, trainData, trainLabels), ...
stackedAETheta, options); % ------------------------------------------------------------------------- %% STEP 6: Test
% Instructions: You will need to complete the code in stackedAEPredict.m
% before running this part of the code
% testData = test_x';
[~, testLabels] = max(test_y, [], 2); [pred] = stackedAEPredict(stackedAETheta, inputSize, hiddenSizeL2, ...
numClasses, netconfig, testData); acc = mean(testLabels(:) == pred(:));
fprintf('Before Finetuning Test Accuracy: %0.3f%%\n', acc * 100); [pred] = stackedAEPredict(stackedAEOptTheta, inputSize, hiddenSizeL2, ...
numClasses, netconfig, testData); acc = mean(testLabels(:) == pred(:));
fprintf('After Finetuning Test Accuracy: %0.3f%%\n', acc * 100);
toc pred(pred==10) = 0;
tmp = [(1:length(pred))' pred(:)];
csvwrite('LiFeiteng0824.csv',tmp)

test准确率 基于Knn的pred-label

===============方法三、 784-200-200-10的Sparse AutoEncoder ===================

使用DeepLearnToolbox

%%
clear
close all
clc %% load data label
load digitData %%% pre-processing
%% ex2 train a X-X hidden unit SDAE and use it to initialize a FFNN
% Setup and train a stacked denoising autoencoder (SDAE)
rng(0);
nDim = [784 200 200];
sae = saesetup(nDim);
sae.ae{1}.activation_function = 'sigm';
sae.ae{1}.learningRate = 1;
sae.ae{1}.inputZeroMaskedFraction = 0.5; sae.ae{2}.activation_function = 'sigm';
sae.ae{2}.learningRate = 1;
sae.ae{2}.inputZeroMaskedFraction = 0.5; % sae.ae{3}.activation_function = 'sigm';
% sae.ae{3}.learningRate = 0.8;
% sae.ae{3}.inputZeroMaskedFraction = 0.5; opts.numepochs = 30;
opts.batchsize = 100;
% opts.sparsityTarget = 0.05;%$LiFeiteng
% opts.nonSparsityPenalty = 1;
opts.dropoutFraction = 0.5; sae = saetrain(sae, train_x, opts);
visualize(sae.ae{1}.W{1}(:,2:end)') %% Use the SDAE to initialize a FFNN
nn = nnsetup([nDim 10]);
nn.activation_function = 'sigm';%'sigm';
nn.learningRate = 1; %add pretrained weights
nn.W{1} = sae.ae{1}.W{1};
nn.W{2} = sae.ae{2}.W{1};
%nn.W{3} = sae.ae{3}.W{1}; % Train the FFNN
fprintf('\n')
opts.numepochs = 40;
opts.batchsize = 100;
nn = nntrain(nn, train_x, train_y, opts); %% test
[er, bad, pred] = nntest(nn, test_x, test_y); pred(pred==10) = 0;
tmp = [(1:length(pred))' pred(:)];
csvwrite('LiFeiteng0824.csv',tmp)

start of the art!

==================================================================

排名200多好伤感!!!

Leaderboard上好多100%的,其实我也可以做到——作弊——把错误的部分 逐一用肉眼扫下,更改test_label就可,不过这就没意思了。

Y. LeCun 维护的

THE MNIST DATABASE

最好成绩:

==============================

可以提高准确率的方法:

1.增加train的个数,对增加原始图像 平移 旋转等构造新图像;

2.对图像做预处理等;直接用PCA or ZCA白化 会改变像素值范围;

3.卷积-池化等加入Deep Networks中去;

4.New Model。。。

Kaggle—Digit Recognizer竞赛的更多相关文章

  1. kaggle实战记录 =>Digit Recognizer

    date:2016-09-13 今天开始注册了kaggle,从digit recognizer开始学习, 由于是第一个案例对于整个流程目前我还不够了解,首先了解大神是怎么运行怎么构思,然后模仿.这样的 ...

  2. Kaggle大数据竞赛平台入门

    Kaggle大数据竞赛平台入门 大数据竞赛平台,国内主要是天池大数据竞赛和DataCastle,国外主要就是Kaggle.Kaggle是一个数据挖掘的竞赛平台,网站为:https://www.kagg ...

  3. Kiggle:Digit Recognizer

    题目链接:Kiggle:Digit Recognizer Each image is 28 pixels in height and 28 pixels in width, for a total o ...

  4. DeepLearning to digit recognizer in kaggle

    DeepLearning to digit recongnizer in kaggle 近期在看deeplearning,于是就找了kaggle上字符识别进行练习.这里我主要用两种工具箱进行求解.并比 ...

  5. Kaggle入门(一)——Digit Recognizer

    目录 0 前言 1 简介 2 数据准备 2.1 导入数据 2.2 检查空值 2.3 正则化 Normalization 2.4 更改数据维度 Reshape 2.5 标签编码 2.6 分割交叉验证集 ...

  6. Kaggle 项目之 Digit Recognizer

    train.csv 和 test.csv 包含 1~9 的手写数字的灰度图片.每幅图片都是 28 个像素的高度和宽度,共 28*28=784 个像素点,每个像素值都在 0~255 之间. train. ...

  7. kaggle赛题Digit Recognizer:利用TensorFlow搭建神经网络(附上K邻近算法模型预测)

    一.前言 kaggle上有传统的手写数字识别mnist的赛题,通过分类算法,将图片数据进行识别.mnist数据集里面,包含了42000张手写数字0到9的图片,每张图片为28*28=784的像素,所以整 ...

  8. 适合初学者的使用CNN的数字图像识别项目:Digit Recognizer with CNN for beginner

    准备工作 数据集介绍 数据文件 train.csv 和 test.csv 包含从零到九的手绘数字的灰度图像. 每张图像高 28 像素,宽 28 像素,总共 784 像素.每个像素都有一个与之关联的像素 ...

  9. SMO序列最小最优化算法

    SMO例子: 1 from numpy import * 2 import matplotlib 3 import matplotlib.pyplot as plt 4 5 def loadDataS ...

随机推荐

  1. WCF技术剖析之四:基于IIS的WCF服务寄宿(Hosting)实现揭秘

    原文:WCF技术剖析之四:基于IIS的WCF服务寄宿(Hosting)实现揭秘 通过<再谈IIS与ASP.NET管道>的介绍,相信读者已经对IIS和ASP.NET的请求处理管道有了一个大致 ...

  2. boost ini

    #include <boost/property_tree/ptree.hpp>#include <boost/property_tree/ini_parser.hpp> .. ...

  3. Bitmap Style Designer非官方说明

    Bitmap Style Designer Bitmap Style Designer给我的第一印象就是简陋,估计也是为了赶工.大致体会了一下,还是能够使用.因为目前没有对此有比较详细的中文资料,就把 ...

  4. Qt Creator键盘快捷键速查

    原地址:http://bbs.qter.org/forum.php?mod=viewthread&tid=904&extra=page%3D2 一般操作的键盘快捷键 操作 快捷键 操作 ...

  5. 认识axure部件库中各个部件的属性

    在axure中每一个部件都有自己的属性,下面这个表格,我们就首先来了解认识一下!以下内容来自网站蓝图,版权归原作者所有! 属性名称 属性说明 属性举例 标签 用来标示部件的名称,在axure中,部件名 ...

  6. 基于visual Studio2013解决面试题之0802数字最多元素

     题目

  7. PHP移动互联网开发笔记(5)——文件的上传下载

    原文地址:http://www.php100.com/html/php/rumen/2014/0326/6706.html 一.文件的上传 1.client设置: (1).在 标签中将enctype和 ...

  8. 【玩转cocos2d-x之四十】怎样在Cocos2d-x 3.0中使用opengl shader?

    有小伙伴提出了这个问题.事实上GLProgramCocos2d-x引擎自带了.全然能够直接拿来用. 先上图吧. 使用opengl前后的对照: watermark/2/text/aHR0cDovL2Js ...

  9. jquery动态改变背景颜色插件

    GETHUB下载地址 背景颜色用animate方法时时无法改变颜色的 所以要使用插件进行补充. 用法: <!DOCTYPE html> <html> <head> ...

  10. POJ 1330 Nearest Common Ancestors(Tarjan离线LCA)

    Description A rooted tree is a well-known data structure in computer science and engineering. An exa ...