SPFA算法

  1. SPFA(Shortest Path Faster Algorithm)(队列优化)算法是求单源最短路径的一种算法。
  2. 判负环(在差分约束系统中会得以体现)。如果某个点进入队列的次数超过N次则存在负环(SPFA无法处理带负环的图)

tarjan算法

Tarjan算法是用来求有向图的强连通分量的。

Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。
定义DFN(u)为节点u搜索的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。
当DFN(u)=Low(u)时,以u为根的搜索子树上所有节点是一个强连通分量。
 
BZOJ 1179

Input

第一行包含两个整数N、M。N表示路口的个数,M表示道路条数。接下来M行,每行两个整数,这两个整数都在1到N之间,第i+1行的两个整数表示第i条道路的起点和终点的路口编号。接下来N行,每行一个整数,按顺序表示每个路口处的ATM机中的钱数。接下来一行包含两个整数S、P,S表示市中心的编号,也就是出发的路口。P表示酒吧数目。接下来的一行中有P个整数,表示P个有酒吧的路口的编号

Output

输出一个整数,表示Banditji从市中心开始到某个酒吧结束所能抢劫的最多的现金总数。

Sample Input

6 7
1 2
2 3
3 5
2 4
4 1
2 6
6 5
10
12
8
16
1 5
1 4
4
3
5
6

Sample Output

47

HINT

50%的输入保证N, M<=3000。所有的输入保证N, M<=500000。每个ATM机中可取的钱数为一个非负整数且不超过4000。输入数据保证你可以从市中心沿着Siruseri的单向的道路到达其中的至少一个酒吧。

 #include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std; int n,m,st,p;
int ans;
int money[],moneys[];
int q[],b,e,d[];//spfa
int stack[],dfn[],low[],index,top;//tarjan
bool vis[];
int color[],num; struct node{
int u;
int v;
int next;
}s[],map[];
int head[],rehead[],cnt; void add(int x,int y){
s[++cnt].u=x;
s[cnt].v=y;
s[cnt].next=head[x];
head[x]=cnt;
} void tarjan(int x){
dfn[x]=++index;
low[x]=index;
stack[++top]=x;
vis[x]=true; for(int i=head[x];i!=;i=s[i].next){
if(!dfn[s[i].v]){
tarjan(s[i].v);
low[x]=min(low[x],low[s[i].v]);
}
else if(vis[s[i].v]==true)low[x]=min(low[x],dfn[s[i].v]);
} if(dfn[x]==low[x]){
vis[x]=false;
color[x]=++num;//计算个数
while(stack[top]!=x){
color[stack[top]]=num;
vis[stack[top--]]=false;
}
top--;
}
} void rebuild(){//缩点
cnt=;
for(int i=;i<=n;i++){
for(int j=head[i];j!=;j=s[j].next){
if(color[i]!=color[s[j].v]){
map[++cnt].u=color[i];
map[cnt].v=color[s[j].v];
map[cnt].next=rehead[color[i]];
rehead[color[i]]=cnt;
}
}
}
} void spfa(int x){
memset(vis,false,sizeof(vis));
q[++b]=x;
e++;
vis[x]=true;
d[x]=moneys[x];
while(b<=e){
int y=q[b++];
for(int i=rehead[y];i!=;i=map[i].next){
if(d[map[i].v]<d[y]+moneys[map[i].v]){
d[map[i].v]=d[y]+moneys[map[i].v];
if(!vis[map[i].v]){
q[++e]=map[i].v;
vis[map[i].v]=true;
}
}
}
vis[q[b]]=false;
}
} int main(){ scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
} for(int i=;i<=n;i++)
if(!dfn[i])tarjan(i); rebuild();//重建图 for(int i=;i<=n;i++){
scanf("%d",&money[i]);
moneys[color[i]]+=money[i];
} scanf("%d%d",&st,&p); spfa(color[st]); for(int i=;i<=p;i++){
int a;
scanf("%d",&a);
ans=max(ans,d[color[a]]);
}
printf("%d",ans); return ;
}

#图# #SPFA# #Tarjan# ----- BZOJ1179的更多相关文章

  1. [BZOJ2963][JLOI2011]飞行路线 分层图+spfa

    Description Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并 ...

  2. 【bzoj2662】[BeiJing wc2012]冻结 分层图Spfa

    原文地址:http://www.cnblogs.com/GXZlegend 题目描述 “我要成为魔法少女!” “那么,以灵魂为代价,你希望得到什么?” “我要将有关魔法和奇迹的一切,封印于卡片之中„„ ...

  3. BZOJ2330 糖果[差分约束方案+spfa?/tarjan]

    以往对于差分约束理解不是太深,导致这题屡次被坑,在此记录一下细节的理解. 差分约束实际上就是利用了spfa的一个特性:只要有$dis_y>dis_x+w_{x,y}$就松弛,直到所有边关系都满足 ...

  4. POJ 2312Battle City(BFS-priority_queue 或者是建图spfa)

    /* bfs搜索!要注意的是点与点的权值是不一样的哦! 空地到空地的步数是1, 空地到墙的步数是2(轰一炮+移过去) 所以用到优先队列进行对当前节点步数的更新! */ #include<iost ...

  5. Invitation Cards(邻接表+逆向建图+SPFA)

    Time Limit: 8000MS   Memory Limit: 262144K Total Submissions: 17538   Accepted: 5721 Description In ...

  6. 【强连通分量+spfa】Bzoj1179 Apio2009 Atm

    Description Solution 显然缩强连通分量,然后求最长路,虽然是DAG但还是有点麻烦,于是用了spfa. Code 重建图_数组写错好多次,感觉做这题也就是练了一下实现. #inclu ...

  7. SHOI2008仙人掌图(tarjan+dp)

    Solution 好题啊没的说. 本题需要求出仙人掌的直径,但仙人掌是一个带有简单环的一张图无法直接用树形dp求解,但它有一个好东西就是没有类似环套环的东西,所以我们在处理时就方便了一些. 思路:ta ...

  8. poj 3177 Redundant Paths 求最少添加几条边成为双联通图: tarjan O(E)

    /** problem: http://poj.org/problem?id=3177 tarjan blog: https://blog.csdn.net/reverie_mjp/article/d ...

  9. 【强联通分量缩点】【最短路】【spfa】bzoj1179 [Apio2009]Atm

    缩点后转化成 DAG图上的单源最长路问题.spfa/dp随便. #include<cstdio> #include<queue> #include<algorithm&g ...

随机推荐

  1. N层架构实现的一个小例子

    主要用到了[单例,抽象工厂,缓存,N层,反射]等知识.架构图如下: 解决方案用到的项目列表如下: 在接口项目中,定义一个IUER接口. namespace IDAL { public interfac ...

  2. 如何把mysql的ID归0?

    如何把mysql的ID归0 可以归0的,truncate table + 表名     就行了

  3. 数据结构录 之 单调队列&单调栈。

    队列和栈是很常见的应用,大部分算法中都能见到他们的影子. 而单纯的队列和栈经常不能满足需求,所以需要一些很神奇的队列和栈的扩展. 其中最出名的应该是优先队列吧我觉得,然后还有两种比较小众的扩展就是单调 ...

  4. Hibernate批量提交

    的 批量插入(Batch inserts) 如果要将很多对象持久化,你必须通过经常的调用 flush() 以及稍后调用 clear() 来控制第一级缓存的大小. Session session = s ...

  5. 关于Spring3报org.aopalliance.intercept.MethodInterceptor错的问题解决方法_JavaLeader_新浪博客

    body { font-family: "Microsoft YaHei UI","Microsoft YaHei",SimSun,"Segoe UI ...

  6. OSX下编译安装opencv3.1.0与opencv_contrib_master

    OSX版本10.11.3 1.安装homebrew,打开终端,写入指令 ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Hom ...

  7. 在Windows环境下设置terminal下调试adb

    当我们想要查看某些程序运行的结果的时候.可能需要打开adb,输入相应的命令,在Windows环境下,需要配置环境变量. 当我们直接在Windows环境下输入adb shell,会提示adb是不内部命令 ...

  8. NIO 入门基础

    输入/输出:概念性描述 I/O 简介 I/O ? 或者输入/输出 ? 指的是计算机与外部世界或者一个程序与计算机的其余部分的之间的接口.它对于任何计算机系统都非常关键,因而所有 I/O 的主体实际上是 ...

  9. iOS开发系统版本适配(未完待续。。。)

    1.iOS9引入了新特性App Transport Security (ATS).新特性要求App内访问的网络必须使用HTTPS协议:iOS9系统发送的网络请求将统一使用TLS 1.2 SSL.采用T ...

  10. 将ADS1.2的工程迁移到KEIL上-基于2440

    裸机程序应该是一个很好的选择 1. 不拷贝启动代码,因为我们用自己的启动代码 2.       建立工程目录分级,建立完成后如下所示 拷贝相应代码到对应目录中 Option中拷贝 Core中拷贝 建立 ...