Spark官方文档——本地编写并运行scala程序
(由于天朝伟大的防火墙,大陆地区是无法成功的,除非你可以顺利翻墙),不想爬墙的可以下载预编译好的Spark ,spark-0.7.2-prebuilt-hadoop1.tgz.gz
scala> val textFile = sc.textFile("README.md")
textFile: spark.RDD[String] = spark.MappedRDD@2ee9b6e3
2、RDD有两种操作,分别是action(返回values)和transformations(返回一个新的RDD);下面开始些少量的actions:
scala> textFile.count() // Number of items in this RDD
res0: Long = 74
scala> textFile.first() // First item in this RDD
res1: String = # Spark
3、下面使用transformations中的filter返回一个文件子集的新RDD
scala> textFile.filter(line => line.contains("Spark")).count() // How many lines contain "Spark"?
res3: Long = 15
二、基于RDD的更多操作
1、RDD的actions和transformations可以被用于更多复杂的计算。例如,我们想找出含有字数最多的行:
scala> textFile.map(line => line.split(" ").size).reduce((a, b) => if (a > b) a else b)
res4: Long = 16
2、为了使程序更简单,我们可以引用包来使用已有的函数方法来编写程序:
scala> import java.lang.Math
import java.lang.Math
scala> textFile.map(line => line.split(" ").size).reduce((a, b) => Math.max(a, b))
res5: Int = 16
3、Spark可以很容易的执行MapReaduce流
scala> val wordCounts = textFile.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey((a, b) => a + b)
wordCounts: spark.RDD[(java.lang.String, Int)] = spark.ShuffledAggregatedRDD@71f027b8
这里我们运用了transformations中的flatMap, map, reduceByKey来计算文件中每个单词出现的次数并存储为(String, Int)对的RDD数据集 4、使用actions的collect方法返回计算好的数值
scala> wordCounts.collect()
三、缓存
res6: Array[(java.lang.String, Int)] = Array((need,2), ("",43), (Extra,3), (using,1), (passed,1), (etc.,1), (its,1), (`/usr/local/lib/libmesos.so`,1), (`SCALA_HOME`,1), (option,1), (these,1), (#,1), (`PATH`,,2), (200,1), (To,3),...
Spark还支持将数据集缓存到内存中。这解决了处理大量迭代运算(例如,机器学习算法)时的反复磁盘IO操作的耗时。内存IO操作和磁盘IO操作的用时完全不是一个数量级的,带来的效率提升是不言而喻的。
1、做个小示例,标记我们之前的linesWithSpark数据集并将其缓存:
scala> linesWithSpark.cache()
res7: spark.RDD[String] = spark.FilteredRDD@17e51082
scala> linesWithSpark.count()
res8: Long = 15
四、一个单机版的scala作业
/*** SimpleJob.scala ***/
import spark.SparkContext
import SparkContext._ object SimpleJob {
def main(args: Array[String]) {
val logFile = "/var/log/syslog" // Should be some file on your system
val sc = new SparkContext("local", "Simple Job", "$YOUR_SPARK_HOME",
List("target/scala-2.9.3/simple-project_2.9.3-1.0.jar"))
val logData = sc.textFile(logFile, 2).cache()
val numAs = logData.filter(line => line.contains("a")).count()
val numBs = logData.filter(line => line.contains("b")).count()
println("Lines with a: %s, Lines with b: %s".format(numAs, numBs))
}
}
程序解释:
首先要创建一个SparkContext对象,传入四个参数,分别是:
1.使用的调度器(示例中使用了local scheduler);
2.程序名称;
3.Spark安装路径;
4.包含这个程序资源的jar包名。
注意:在分布式中后两个参数必须设置,安装路径来确定Spark通过哪个several nodes运行;jar名会让Spark自动向slave nodes传输jar文件 这个程序的文件依靠了Spark的API,所以我们必须有一个sbt的配置文件用以说明程序和Spark的依赖关系。下面是配置文件simple.sbt:
name := "Simple Project"
version := "1.0"
scalaVersion := "2.9.3"
libraryDependencies += "org.spark-project" %% "spark-core" % "0.7.3"
resolvers ++= Seq(
"Akka Repository" at "http://repo.akka.io/releases/",
"Spray Repository" at "http://repo.spray.cc/")
为了让sbt正确的工作,我们必须将SimpleJob.scala和simple.sbt根据典型的目录结构进行布局。完成布局后,我们可以创建一个包含了程序源码的JAR包,然后使用sbt的run命令来执行示例程序
$ find .
.
./simple.sbt
./src
./src/main
./src/main/scala
./src/main/scala/SimpleJob.scala
$ sbt package
$ sbt run
...
Lines with a: 8422, Lines with b: 1836
这样就完成了程序在本地运行的示例
Spark官方文档——本地编写并运行scala程序的更多相关文章
- spark 官方文档(1)——提交应用程序
Spark版本:1.6.2 spark-submit提供了在所有集群平台提交应用的统一接口,你不需要因为平台的迁移改变配置.Spark支持三种集群:Standalone.Apache Mesos和Ha ...
- Spark官方文档 - 中文翻译
Spark官方文档 - 中文翻译 Spark版本:1.6.0 转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述(Overview) 2 引入Spark(Linki ...
- 006-基于hyperledger fabric1.4( 官方文档)编写第一个应用【外部nodejs调用】
一.概述 官方原文地址 Writing Your First Application如果对fabric网络的基本运行机制不熟悉的话,请看这里. 注意:本教程是对fabric应用以及如何使用智能合约的简 ...
- 《Spark 官方文档》在Mesos上运行Spark
本文转自:http://ifeve.com/spark-mesos-spark/ 在Mesos上运行Spark Spark可以在由Apache Mesos 管理的硬件集群中运行. 在Mesos集群中使 ...
- spark api之一:Spark官方文档 - 中文翻译
转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述(Overview) 2 引入Spark(Linking with Spark) 3 初始化Spark(Initi ...
- Spark 官方文档(4)——Configuration配置
Spark可以通过三种方式配置系统: 通过SparkConf对象, 或者Java系统属性配置Spark的应用参数 通过每个节点上的conf/spark-env.sh脚本为每台机器配置环境变量 通过lo ...
- 【译】Spark官方文档——Spark Configuration(Spark配置)
注重版权,尊重他人劳动 转帖注明原文地址:http://www.cnblogs.com/vincent-hv/p/3316502.html Spark主要提供三种位置配置系统: 环境变量:用来启动 ...
- Spark官方文档——独立集群模式(Standalone Mode)
除了部署在Mesos之上, Spark也支持独立部署模式,包括一个Spark master进程和多个 Spark worker进程.独立部署模式可以运行在单机上作为测试之用,也可以部署在集群上.如果你 ...
- 【译】Spark官方文档——编程指南
本文翻自官方博客,略有添加:https://github.com/mesos/spark/wiki/Spark-Programming-Guide Spark发指南 从高的面看,其实每一个Spark的 ...
随机推荐
- CodeForces 617C【序枚举】
题意: 有两个点喷水,有很多个点有花,给出坐标. 求使得每个花都可以被喷到,两个喷水的半径的平方的和最小是多少. 思路: 枚举其中一个喷水的最大半径. 坑: 这题我贪心的思路有很大问题.一开始也是想这 ...
- LeetCode Lowest Common Ancestor of a Binary Serach Tree
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...
- ansible高级用法
将多个符合正则的文件拷贝到目标机器 - name: Copy copy: src={{ item }} dest=/root/.sshkeys mode=0600 owner=root group=r ...
- Linux下查看文件和文件夹大小(转)
觉得挺有用的,就转到了自己的博客里,方便以后查询: 转自:http://www.cnblogs.com/benio/archive/2010/10/13/1849946.html 当磁盘大小超过标准时 ...
- Orchard官方文档翻译(一) 总览
原文地址:http://docs.orchardproject.net/ 最近想要学习了解orchard,但却没有找到相关的中文文档,只有英文文档.于是决定自行翻译,以便日后方便翻阅. 转载请注明原作 ...
- [AFUI]App Framework Quickstart
---------------------------------------------------------------------------------------------------- ...
- 【翻译习作】 Windows Workflow Foundation程序开发-前言
Windows Workflow Foundation程序开发-基于XAML和C#的WF实战技术与例程 ——C#程序员的WF功能与编程接口技术指导 前言 Windows Workflow Founda ...
- 了解Entity Framework中事务处理
Entity Framework 6以前,框架本身并没有提供显式的事务处理方案,在EF6中提供了事务处理的API. 所有版本的EF,只要你调用SaveChanges方法进行插入.修改或删除,EF框架会 ...
- php最简单的文件处理。
<?php $DOCUMENT_ROOT =$_SERVER['DOCUMENT_ROOT']; ?> <html> <head> <title>Bob ...
- Android SharedPreferences 见解
今天突然遇到了SharedPreferences问题,虽然以前用过,但从没有深入的了解一下,今天就顺便深入了解一下,并总结一下,防止以后忘记. SharePreferences是Android平台上一 ...