Python中的正则表达式regular expression
1 match = re.search(pat,str)
match = re.search(pat, str)
stores the search result in a variable named "match". Then the if-statement tests the match -- if true the search succeeded and match.group() is the matching text (e.g. 'word:cat'). Otherwise if the match is false (None to be more specific), then the search did not succeed, and there is no matching text.
- str ='an example word:cat!!'
match = re.search(r'word:\w\w\w', str)
# If-statement after search() tests if it succeeded
if match:
print'found', match.group()## 'found word:cat'
else:
print'did not find'
2 Basic Patterns
- a, X, 9, < -- ordinary characters just match themselves exactly. The meta-characters which do not match themselves because they have special meanings are: . ^ $ * + ? { [ ] \ | ( ) (details below)
- . (a period) -- matches any single character except newline '\n'
- \w -- (lowercase w) matches a "word" character: a letter or digit or underbar [a-zA-Z0-9_]. Note that although "word" is the mnemonic for this, it only matches a single word char, not a whole word. \W (upper case W) matches any non-word character.
- \b -- boundary between word and non-word
- \s -- (lowercase s) matches a single whitespace character -- space, newline, return, tab, form [ \n\r\t\f]. \S (upper case S) matches any non-whitespace character.
- \t, \n, \r -- tab, newline, return
- \d -- decimal digit [0-9] (some older regex utilities do not support but \d, but they all support \w and \s)
- ^ = start, $ = end -- match the start or end of the string
- \ -- inhibit the "specialness" of a character. So, for example, use \. to match a period or \\ to match a slash. If you are unsure if a character has special meaning, such as '@', you can put a slash in front of it, \@, to make sure it is treated just as a character.
3 Basic Examples
The basic rules of regular expression search for a pattern within a string are:
- The search proceeds through the string from start to end, stopping at the first match found
- All of the pattern must be matched, but not all of the string
- If
match = re.search(pat, str)
is successful, match is not None and in particular match.group() is the matching text
- ## Search for pattern 'iii' in string 'piiig'.
## All of the pattern must match, but it may appear anywhere.
## On success, match.group() is matched text.
match = re.search(r'iii','piiig')=> found, match.group()=="iii"
match = re.search(r'igs','piiig')=> not found, match ==None- ## . = any char but \n
match = re.search(r'..g','piiig')=> found, match.group()=="iig"- ## \d = digit char, \w = word char
match = re.search(r'\d\d\d','p123g')=> found, match.group()=="123"
match = re.search(r'\w\w\w','@@abcd!!')=> found, match.group()=="abc"
4 Repetition
Things get more interesting when you use + and * to specify repetition in the pattern
- + -- 1 or more occurrences of the pattern to its left, e.g. 'i+' = one or more i's
- * -- 0 or more occurrences of the pattern to its left
- ? -- match 0 or 1 occurrences of the pattern to its left
5 Repetition Examples
- ## i+ = one or more i's, as many as possible.
match = re.search(r'pi+','piiig')=> found, match.group()=="piii"- ## Finds the first/leftmost solution, and within it drives the +
## as far as possible (aka 'leftmost and largest').
## In this example, note that it does not get to the second set of i's.
match = re.search(r'i+','piigiiii')=> found, match.group()=="ii"- ## \s* = zero or more whitespace chars
## Here look for 3 digits, possibly separated by whitespace.
match = re.search(r'\d\s*\d\s*\d','xx1 2 3xx')=> found, match.group()=="1 2 3"
match = re.search(r'\d\s*\d\s*\d','xx12 3xx')=> found, match.group()=="12 3"
match = re.search(r'\d\s*\d\s*\d','xx123xx')=> found, match.group()=="123"- ## ^ = matches the start of string, so this fails:
match = re.search(r'^b\w+','foobar')=> not found, match ==None
## but without the ^ it succeeds:
match = re.search(r'b\w+','foobar')=> found, match.group()=="bar"
6 Emails Example
Suppose you want to find the email address inside the string 'xyz alice-b@google.com purple monkey'. We'll use this as a running example to demonstrate more regular expression features. Here's an attempt using the pattern r'\w+@\w+':
- str ='purple alice-b@google.com monkey dishwasher'
match = re.search(r'\w+@\w+', str)
if match:
print match.group() ## 'b@google'
The search does not get the whole email address in this case because the \w does not match the '-' or '.' in the address. We'll fix this using the regular expression features below.
Square Brackets
Square brackets can be used to indicate a set of chars, so [abc] matches 'a' or 'b' or 'c'. The codes \w, \s etc. work inside square brackets too with the one exception that dot (.) just means a literal dot. For the emails problem, the square brackets are an easy way to add '.' and '-' to the set of chars which can appear around the @ with the pattern r'[\w.-]+@[\w.-]+' to get the whole email address:
- match = re.search(r'[\w.-]+@[\w.-]+', str)
if match:
print match.group() ## 'alice-b@google.com'
(More square-bracket features) You can also use a dash to indicate a range, so [a-z] matches all lowercase letters. To use a dash without indicating a range, put the dash last, e.g. [abc-]. An up-hat (^) at the start of a square-bracket set inverts it, so [^ab] means any char except 'a' or 'b'.
7 Group Extraction
The "group" feature of a regular expression allows you to pick out parts of the matching text. Suppose for the emails problem that we want to extract the username and host separately. To do this, add parenthesis ( ) around the username and host in the pattern, like this: r'([\w.-]+)@([\w.-]+)'. In this case, the parenthesis do not change what the pattern will match, instead they establish logical "groups" inside of the match text. On a successful search, match.group(1) is the match text corresponding to the 1st left parenthesis, and match.group(2) is the text corresponding to the 2nd left parenthesis. The plain match.group() is still the whole match text as usual.
- str ='purple alice-b@google.com monkey dishwasher'
match = re.search('([\w.-]+)@([\w.-]+)', str)
if match:
print match.group() ## 'alice-b@google.com' (the whole match)
print match.group(1) ## 'alice-b' (the username, group 1)
print match.group(2) ## 'google.com' (the host, group 2)
A common workflow with regular expressions is that you write a pattern for the thing you are looking for, adding parenthesis groups to extract the parts you want.
8 findall
findall() is probably the single most powerful function in the re module. Above we used re.search() to find the first match for a pattern. findall() finds *all* the matches and returns them as a list of strings, with each string representing one match.
- ## Suppose we have a text with many email addresses
str ='purple alice@google.com, blah monkey bob@abc.com blah dishwasher'- ## Here re.findall() returns a list of all the found email strings
emails = re.findall(r'[\w\.-]+@[\w\.-]+', str)## ['alice@google.com', 'bob@abc.com']
for email in emails:
# do something with each found email string
print email
9 findall With Files
For files, you may be in the habit of writing a loop to iterate over the lines of the file, and you could then call findall() on each line. Instead, let findall() do the iteration for you -- much better! Just feed the whole file text into findall() and let it return a list of all the matches in a single step (recall that f.read() returns the whole text of a file in a single string):
- # Open file
f = open('test.txt','r')
# Feed the file text into findall(); it returns a list of all the found strings
strings = re.findall(r'some pattern', f.read())
10 findall and Groups
The parenthesis ( ) group mechanism can be combined with findall(). If the pattern includes 2 or more parenthesis groups, then instead of returning a list of strings, findall() returns a list of *tuples*. Each tuple represents one match of the pattern, and inside the tuple is the group(1), group(2) .. data. So if 2 parenthesis groups are added to the email pattern, then findall() returns a list of tuples, each length 2 containing the username and host, e.g. ('alice', 'google.com').
- str ='purple alice@google.com, blah monkey bob@abc.com blah dishwasher'
tuples = re.findall(r'([\w\.-]+)@([\w\.-]+)', str)
print tuples ## [('alice', 'google.com'), ('bob', 'abc.com')]
for tuple in tuples:
print tuple[0] ## username
print tuple[1] ## host
Once you have the list of tuples, you can loop over it to do some computation for each tuple. If the pattern includes no parenthesis, then findall() returns a list of found strings as in earlier examples. If the pattern includes a single set of parenthesis, then findall() returns a list of strings corresponding to that single group. (Obscure optional feature: Sometimes you have paren ( ) groupings in the pattern, but which you do not want to extract. In that case, write the parens with a ?: at the start, e.g. (?: ) and that left paren will not count as a group result.)
11 Options
The re functions take options to modify the behavior of the pattern match. The option flag is added as an extra argument to the search() or findall() etc., e.g. re.search(pat, str, re.IGNORECASE).
- IGNORECASE -- ignore upper/lowercase differences for matching, so 'a' matches both 'a' and 'A'.
- DOTALL -- allow dot (.) to match newline -- normally it matches anything but newline. This can trip you up -- you think .* matches everything, but by default it does not go past the end of a line. Note that \s (whitespace) includes newlines, so if you want to match a run of whitespace that may include a newline, you can just use \s*
- MULTILINE -- Within a string made of many lines, allow ^ and $ to match the start and end of each line. Normally ^/$ would just match the start and end of the whole string.
12 Greedy vs. Non-Greedy
This is optional section which shows a more advanced regular expression technique not needed for the exercises.
Suppose you have text with tags in it: <b>foo</b> and <i>so on</i>
Suppose you are trying to match each tag with the pattern '(<.*>)' -- what does it match first?
The result is a little surprising, but the greedy aspect of the .* causes it to match the whole '<b>foo</b> and <i>so on</i>' as one big match. The problem is that the .* goes as far as is it can, instead of stopping at the first > (aka it is "greedy").
There is an extension to regular expression where you add a ? at the end, such as .*? or .+?, changing them to be non-greedy. Now they stop as soon as they can. So the pattern '(<.*?>)' will get just '<b>' as the first match, and '</b>' as the second match, and so on getting each <..> pair in turn. The style is typically that you use a .*?, and then immediately its right look for some concrete marker (> in this case) that forces the end of the .*? run.
The *? extension originated in Perl, and regular expressions that include Perl's extensions are known as Perl Compatible Regular Expressions -- pcre. Python includes pcre support. Many command line utils etc. have a flag where they accept pcre patterns.
An older but widely used technique to code this idea of "all of these chars except stopping at X" uses the square-bracket style. For the above you could write the pattern, but instead of .* to get all the chars, use [^>]* which skips over all characters which are not > (the leading ^ "inverts" the square bracket set, so it matches any char not in the brackets).
13 Substitution
The re.sub(pat, replacement, str) function searches for all the instances of pattern in the given string, and replaces them. The replacement string can include '\1', '\2' which refer to the text from group(1), group(2), and so on from the original matching text.
Here's an example which searches for all the email addresses, and changes them to keep the user (\1) but have yo-yo-dyne.com as the host.
- str ='purple alice@google.com, blah monkey bob@abc.com blah dishwasher'
## re.sub(pat, replacement, str) -- returns new string with all replacements,
## \1 is group(1), \2 group(2) in the replacement
print re.sub(r'([\w\.-]+)@([\w\.-]+)', r'\1@yo-yo-dyne.com', str)
## purple alice@yo-yo-dyne.com, blah monkey bob@yo-yo-dyne.com blah dishwasher
Python中的正则表达式regular expression的更多相关文章
- C#中【正则表达式regular expression】相关的知识
Regex System.Text.RegularExpressions.Regex regex应该是regular expression的缩写 https://msdn.microsoft ...
- Python -- 正则表达式 regular expression
正则表达式(regular expression) 根据其英文翻译,re模块 作用:用来匹配字符串. 在Python中,正则表达式是特殊的字符序列,检查一个字符串是否与某种模式匹配. 设计思想:用一 ...
- Python::re 模块 -- 在Python中使用正则表达式
前言 这篇文章,并不是对正则表达式的介绍,而是对Python中如何结合re模块使用正则表达式的介绍.文章的侧重点是如何使用re模块在Python语言中使用正则表达式,对于Python表达式的语法和详细 ...
- Python 模块 re (Regular Expression)
使用 Python 模块 re 实现解析小工具 概要 在开发过程中发现,Python 模块 re(Regular Expression)是一个很有价值并且非常强大的文本解析工具,因而想要分享一下此 ...
- 在python中使用正则表达式(转载)
https://www.cnblogs.com/hanmk/p/9143514.html 在python中使用正则表达式(一) 在python中通过内置的re库来使用正则表达式,它提供了所有正则表 ...
- 在Python中使用正则表达式同时匹配邮箱和电话并进行简单的分类
在Python使用正则表达式需要使用re(regular exprssion)模块,使用正则表达式的难点就在于如何写好p=re.compile(r' 正则表达式')的内容. 下面是在Python中使用 ...
- Java基础-正则表达式(Regular Expression)语法规则简介
Java基础-正则表达式(Regular Expression)语法规则简介 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.正则表达式的概念 正则表达式(Regular Exp ...
- 正则表达式-Regular expression学习笔记
正则表达式 正则表达式(Regular expression)是一种符号表示法,被用来识别文本模式. 最近在学习正则表达式,今天整理一下其中的一些知识点 grep - 打印匹配行 grep 是个很强大 ...
- 正则表达式(Regular Expression, RegEx)学习入门
1. 概述 正则表达式(Regular Expression, RegEx)是一种匹配模式,描述的是一串文本的特征. 正如自然语言中高大.坚固等词语抽象出来描述事物特征一样,正则表达式就是字符的高度抽 ...
随机推荐
- Android Socket通信
1.TCP: xml: <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns: ...
- jQuery操作 input type=checkbox的实现代码
代码如下: <input type="checkbox">: 2012欧洲杯"死亡之组"小组出线的国家队是:<br> <input ...
- DevExpress LookUpEdit和ComboBoxEdit部分用法
LookUpEdit 1.绑定列 (注意点:LookUpEdit1的FieldName要和绑定的列明一致) 方式一: LookUpEdit1.Properties.DisplayMember = &q ...
- mvc url路由参数的加密和解密
查看某个信息的时候一般会在url上加上该信息在数据库中对应的主键id(而且一般是自增的) url是这样子的 xxxDetail/1 , 虽然对于我们开发人员来说可以这种显式的数据库主键会方便调试过程, ...
- 学习simple.data之高级篇
一.调用存储过程 1.不带参数 CREATE PROCEDURE ProcedureWithoutParams AS SELECT * FROM ORDER; 调用db.ProcedureWithou ...
- SegmentFault 2014黑客马拉松 北京 作品demo
1号作品展示——最熟悉的陌生人 app 利用录音(声纹识别)和照片来让好久不见的见面变得不那么尴尬. 2号作品展示——神奇魔镜 app 灵感来自通话<白雪公主>,穿越到今天的“魔镜”功能依 ...
- WinForm 加载自定义控件闪烁问题
WinForm加载多个自定义控件时,会出现很严重的闪烁问题,很卡,一块一块的加载(像打开网页时,网络很卡的那种感觉)简直没法忍受. 在网上搜索了好久,网上大部分的方法是一下4种,但是都不能有效的解决问 ...
- 【js类库AngularJs】web前端的mvc框架angularjs之hello world
AngularJS诞生于2009年,由Misko Hevery 等人创建,后为Google所收购.是一款优秀的前端JS框架,已经被用于Google的多款产品当中.AngularJS有着诸多特性,最为核 ...
- Oracle ODP.NET连接池
数据库连接池 连接池是数据库连接的缓存,每当应用程序需要连接数据库时向连接池申请数据库连接,连接池负责具体数据库连接的创建和销毁.连接池中的数据库连接会缓存一段时间,后续的连接请求首先使用缓存中的数据 ...
- iOS进阶学习-数据处理之文件读写
一.沙盒机制 1.什么是沙盒? 每一个iOS应用程序都会为自己创建一个文件系统目录(文件夹),这个独立.封闭.安全的空间,叫做沙盒. 2.沙盒机制(SandBox) 沙盒是一种安全体系. 它规定了应用 ...