Machine Schedule

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 8404    Accepted Submission(s): 4215

Problem Description
As
we all know, machine scheduling is a very classical problem in computer
science and has been studied for a very long history. Scheduling
problems differ widely in the nature of the constraints that must be
satisfied and the type of schedule desired. Here we consider a 2-machine
scheduling problem.

There are two machines A and B. Machine A
has n kinds of working modes, which is called mode_0, mode_1, …,
mode_n-1, likewise machine B has m kinds of working modes, mode_0,
mode_1, … , mode_m-1. At the beginning they are both work at mode_0.

For
k jobs given, each of them can be processed in either one of the two
machines in particular mode. For example, job 0 can either be processed
in machine A at mode_3 or in machine B at mode_4, job 1 can either be
processed in machine A at mode_2 or in machine B at mode_4, and so on.
Thus, for job i, the constraint can be represent as a triple (i, x, y),
which means it can be processed either in machine A at mode_x, or in
machine B at mode_y.

Obviously, to accomplish all the jobs, we
need to change the machine's working mode from time to time, but
unfortunately, the machine's working mode can only be changed by
restarting it manually. By changing the sequence of the jobs and
assigning each job to a suitable machine, please write a program to
minimize the times of restarting machines.

 
Input
The
input file for this program consists of several configurations. The
first line of one configuration contains three positive integers: n, m
(n, m < 100) and k (k < 1000). The following k lines give the
constrains of the k jobs, each line is a triple: i, x, y.

The input will be terminated by a line containing a single zero.

 
Output
The output should be one integer per line, which means the minimal times of restarting machine.
 
Sample Input
5 5 10
0 1 1
1 1 2
2 1 3
3 1 4
4 2 1
5 2 2
6 2 3
7 2 4
8 3 3
9 4 3
0
 
Sample Output
3
 
Source
 
题意:
有两台机器,各有n和m个工作模式,k个任务,i x y,第i个任务可以由第一台机器的x模式执行或者第2台机器的y模式执行,每个机器如果换了一个模式就要重新启动,问最少的重启次数,最开始都在0模式
从零模式开始不用启动即第一次不用启动。
代码:
 // 最小点覆盖模板  一个模式可以同时执行多个任务。这就是最小点覆盖掉所有的边。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int mp[][],vis[],link[];
int n,Mu,Mv,m,k;
int dfs(int x)
{
for(int i=;i<Mv;i++)
{
if(!vis[i]&&mp[x][i])
{
vis[i]=;
if(link[i]==-||dfs(link[i]))
{
link[i]=x;
return ;
}
}
}
return ;
}
int Maxcon()
{
int ans=;
memset(link,-,sizeof(link));
for(int i=;i<Mu;i++)
{
memset(vis,,sizeof(vis));
if(dfs(i)) ans++;
}
return ans;
}
int main()
{
int a,b,c;
while(scanf("%d",&n)&&n)
{
scanf("%d%d",&m,&k);
memset(mp,,sizeof(mp));
while(k--){
scanf("%d%d%d",&c,&a,&b);
if(a!=&&b!=) mp[a][b]=; //0模式不用
}
Mu=n;Mv=m; //左右集合
printf("%d\n",Maxcon());
}
return ;
}

*HDU1150 二分图的更多相关文章

  1. HDU1150 Machine Schedule(二分图最大匹配、最小点覆盖)

    As we all know, machine scheduling is a very classical problem in computer science and has been stud ...

  2. hdu-1150(二分图+匈牙利算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1150 思路:题目中给出两个机器A,B:给出k个任务,每个任务可以由A的x状态或者B的y状态来完成. 完 ...

  3. 【hdu1150】【Machine Schedule】二分图最小点覆盖+简单感性证明

    (上不了p站我要死了,侵权度娘背锅) 题目大意 有两台机器A和B以及N个需要运行的任务.每台机器有M种不同的模式,而每个任务都恰好在一台机器上运行.如果它在机器A上运行,则机器A需要设置为模式ai,如 ...

  4. 「日常温习」Hungary算法解决二分图相关问题

    前言 二分图的重点在于建模.以下的题目大家可以清晰的看出来这一点.代码相似度很高,但是思路基本上是各不相同. 题目 HDU 1179 Ollivanders: Makers of Fine Wands ...

  5. HDU-1150-MachineSchedule(二分图匹配)

    链接:https://vjudge.net/problem/HDU-1150#author=0 题意: 在一个工厂,有两台机器A,B生产产品.A机器有n种工作模式(模式0,模式1....模式n-1). ...

  6. C - NP-Hard Problem(二分图判定-染色法)

    C - NP-Hard Problem Crawling in process... Crawling failed Time Limit:2000MS     Memory Limit:262144 ...

  7. POJ 2125 Destroying the Graph 二分图最小点权覆盖

    Destroying The Graph Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8198   Accepted: 2 ...

  8. bzoj4025 二分图

    支持加边和删边的二分图判定,分治并查集水之(表示我的LCT还很不熟--仅仅停留在极其简单的模板水平). 由于是带权并查集,并且不能路径压缩,所以对权值(到父亲距离的奇偶性)的维护要注意一下. 有一个小 ...

  9. hdu 1281 二分图最大匹配

    对N个可以放棋子的点(X1,Y1),(x2,Y2)......(Xn,Yn);我们把它竖着排看看~(当然X1可以对多个点~) X1   Y1 X2   Y2 X3   Y3 ..... Xn   Yn ...

随机推荐

  1. php 类编写

    1.没有重载的函数,实现重载函数只能通过func_get_args()这种方式进行转化 2.每个变量只能单独命名为控制权限(private.protected.public) 3.php反射类带参数 ...

  2. 支持向量机SVM

    SVM(Support Vector Machine)有监督的机器学习方法,可以做分类也可以做回归.SVM把分类问题转化为寻找分类平面的问题,并通过最大化分类边界点距离分类平面的距离来实现分类. 有好 ...

  3. H5案例分享:html5移动开发细微之美

    html5移动开发细微之美 1.H5页面窗口自动调整到设备宽度,并禁止用户缩放页面 <meta name="viewport" content="width=dev ...

  4. Extjs 制作柱状图

    在JSP页面制作柱状图,可以根据数据的变化动态实时的变化 主要是使用EXTJS自带的插件达到效果 Ext.require('Ext.chart.*'); Ext.require([ 'Ext.Wind ...

  5. 两个int的和判断溢出

    long a,b; cin>>a>>b; long i; i = a+b; if((i^a)<0 && (i^b)<0) cout<<& ...

  6. Codeforces 696 D. Legen...

    Description 每个字符串有些价值,问生成长度为 \(l\) 的字符串最多能获得多少价值,总字符数不超过 \(200\), \(l\leqslant 10^{14}\) . Sol AC自动机 ...

  7. gdbsever 使用说明

    gdbsever 使用说明 在新塘N3292x平台下 编译 gdbsever ./configure --target=arm-linux --host=arm-linux arm-linux-gdb ...

  8. 基于winner 滤波平稳降噪效果

    https://en.wikipedia.org/wiki/Wiener_filter Wiener filter solutions The Wiener filter problem has so ...

  9. Python: Win7下使用 pip install lxml 无法安装lxml?

    1.在网址 http://www.lfd.uci.edu/~gohlke/pythonlibs/#lxml 下,搜索lxml,下载Python对应的lxml版本.如下图: 2.打开cmd,进入到lxm ...

  10. 对oracle数据库Blob字段的操作

    java实体类 定义类型 byte[] private byte[] str_blob hibernate映射文件类型oracle.sql.BLOB <property name="s ...