题目描述

题目链接

思路

由于要统计每个字符串的次数,以及字典序,所以,我们需要把用户每次add的字符串封装成一个对象,这个对象中包括了这个字符串和这个字符串出现的次数。

假设我们封装的对象如下:

public class Word {
public String value; // 对应的字符串
public int times; // 对应的字符串出现的次数 public Word(String v, int t) {
value = v;
times = t;
}
}

topk的要求是: 出现次数多的排前面,如果次数一样,字典序小的排前面

很容易想到用有序表+比较器来做。

比较器的规则定义成和topk的要求一样,然后把元素元素加入使用比较器的有序表中,如果要返回topk,直接从这个有序表弹出返回给用户即可。比较器的定义如下:

public class TopKComparator implements Comparator<Word> {
@Override
public int compare(Word o1, Word o2) {
// 次数大的排前面,次数一样字典序在小的排前面
return o1.times == o2.times ? o1.value.compareTo(o2.value) : (o2.times - o1.times);
}
}

有序表配置这个比较器即可

TreeSet<Word>  topK = new TreeSet<>(new TopKComparator());

所以topk()方法很简单,只需要从有序表里面把元素拿出来返回给用户即可

public List<String> topk() {
List<String> result = new ArrayList<>();
for (Word word : topK) {
result.add(word.value);
}
return result;
}

时间复杂度 O(K)

以上步骤不复杂,接下来是add的逻辑,add的每次操作都有可能对前面我们设置的topK有序表造成影响,

所以在每次add操作的时候需要有一个机制可以告诉topK这个有序表,需要淘汰什么元素,需要新加哪个元素,让topK这个有序表时时刻刻只存topk个元素,

这样就可以确保topK()方法比较单纯,时间复杂度保持在O(K)

所以接下来的问题是:如何告诉topK这个有序表,需要淘汰什么元素,需要新加哪个元素?

我们可以通过堆来维持一个门槛,堆顶元素表示最先要淘汰的元素,所以堆中的比较策略定为:

次数从小到大,字典序从大到小,这样,堆顶元素永远是:次数相对更少或者字典序相对更大的那个元素。所以如果某个时刻要淘汰一个元素,从堆顶拿出来,然后再到topK这个有序表中查询是否有这个元素,有的话就从topK这个有序表中删除这个元素即可。

private class ThresholdComparator implements Comparator<Word> {

    @Override
public int compare(Word o1, Word o2) {
// 设置堆门槛,堆顶元素最先被淘汰
return o1.times == o2.times ? o2.value.compareTo(o2.value) : (o1.times - o2.times);
}
}

如果使用Java自带的PriorityQueue做这个堆,无法实现动态调整堆的功能,因为我们需要把次数增加的字符串(Word)在堆上动态调整,自带的PriorityQueue无法实现这个功能,PriorityQueue只能支持每次新增或者删除一个节点的时候,动态调整堆(

O(logN),但是如果堆中的节点变化了,PriorityQueue无法自动调整成堆结构,所以我们需要实现一个增强堆,用于节点变化的时候可以动态调整堆结构(保持O(logN)复杂度)。

加强堆的核心是增加了一个哈希表,

private Map<Word, Integer> indexMap;

用于存放每个节点所在堆上的位置,在节点变化的时候,可以通过哈希表查出这个节点所在的位置,然后从所在位置进行heapify/heapInsert操作,且这两个操作只会走一个,

这样就动态调整好了这个堆结构,以下resign方法就是完成这个工作

public void resign(Word word) {
int i = indexMap.get(word);
heapify(i);
heapInsert(i);
}

除了这个resign方法,自定义堆中的其他方法和常规的堆没有区别,在每次进行heapify和heapInsert操作的时候,如果涉及到交换两个元素,需要将indexMap中的两个元素的位置也互换

private void swap(int i, int j) {
if (i != j) {
indexMap.put(words[i], j);
indexMap.put(words[j], i);
Word tmp = words[i];
words[i] = words[j];
words[j] = tmp;
}
}

由于自定义堆和有序表topk只存top k个数据,所以TopK结构中还需要一个哈希表来记录所有的字符串出现与否:

private Map<String, Word> map;

自此,TopK结构中的add方法需要的前置条件已经具备,整个add方法的流程如下:

完整代码

class TopK {
private TreeSet<Word> topK;
private Heap heap;
private Map<String, Word> map;
private int k; public TopK(int k) {
this.k = k;
topK = new TreeSet<>(new TopKComparator());
heap = new Heap(k, new ThresholdComparator());
map = new HashMap<>();
} public void add(String str) {
if (k == 0) {
return;
}
Word word = map.get(str);
if (word == null) {
// 新增元素
word = new Word(str, 1);
// 是否到达门槛可以替换堆中元素
if (heap.isReachThreshold(word)) {
if (heap.isFull()) {
Word toBeRemoved = heap.poll();
topK.remove(toBeRemoved);
}
heap.add(word);
topK.add(word);
}
} else {
if (heap.contains(word)) {
topK.remove(word);
word.times++;
topK.add(word);
heap.resign(word);
} else {
word.times++;
if (heap.isReachThreshold(word)) {
if (heap.isFull()) {
Word toBeRemoved = heap.poll();
topK.remove(toBeRemoved);
}
heap.add(word);
topK.add(word);
}
}
}
map.put(str, word);
} public List<String> topk() {
if (k == 0) {
return new ArrayList<>();
}
List<String> result = new ArrayList<>();
for (Word word : topK) {
result.add(word.value);
}
return result;
} private class Word {
public String value;
public int times; public Word(String v, int t) {
value = v;
times = t;
}
} private class TopKComparator implements Comparator<Word> {
@Override
public int compare(Word o1, Word o2) {
// 次数大的排前面,次数一样字典序在小的排前面
return o1.times == o2.times ? o1.value.compareTo(o2.value) : (o2.times - o1.times);
}
} private class ThresholdComparator implements Comparator<Word> { @Override
public int compare(Word o1, Word o2) {
// 设置堆门槛,堆顶元素最先被淘汰
return o1.times == o2.times ? o2.value.compareTo(o1.value) : (o1.times - o2.times);
}
} private class Heap {
private Word[] words;
private Comparator<Word> comparator;
private Map<Word, Integer> indexMap; public Heap(int k, Comparator<Word> comparator) {
words = new Word[k];
indexMap = new HashMap<>();
this.comparator = comparator;
} public boolean isEmpty() {
return indexMap.isEmpty();
} public boolean isFull() {
return indexMap.size() == words.length;
} public boolean isReachThreshold(Word word) {
if (isEmpty() || indexMap.size() < words.length) {
return true;
} else {
if (comparator.compare(words[0], word) < 0) {
return true;
}
return false;
}
} public void add(Word word) {
int size = indexMap.size();
words[size] = word;
indexMap.put(word, size);
heapInsert(size); } private void heapify(int i) {
int size = indexMap.size();
int leftChildIndex = 2 * i + 1;
while (leftChildIndex < size) {
Word weakest = leftChildIndex + 1 < size
? (comparator.compare(words[leftChildIndex], words[leftChildIndex + 1]) < 0
? words[leftChildIndex]
: words[leftChildIndex + 1])
: words[leftChildIndex];
if (comparator.compare(words[i], weakest) < 0) {
break;
}
int weakestIndex = weakest == words[leftChildIndex] ? leftChildIndex : leftChildIndex + 1;
swap(weakestIndex, i);
i = weakestIndex;
leftChildIndex = 2 * i + 1;
}
} public void resign(Word word) {
int i = indexMap.get(word);
heapify(i);
heapInsert(i);
} private void heapInsert(int i) {
while (comparator.compare(words[i], words[(i - 1) / 2]) < 0) {
swap(i, (i - 1) / 2);
i = (i - 1) / 2;
}
} public boolean contains(Word word) {
return indexMap.containsKey(word);
} public Word poll() {
Word result = words[0];
swap(0, indexMap.size() - 1);
indexMap.remove(result);
heapify(0);
return result;
} private void swap(int i, int j) {
if (i != j) {
indexMap.put(words[i], j);
indexMap.put(words[j], i);
Word tmp = words[i];
words[i] = words[j];
words[j] = tmp;
}
}
}
}

复杂度

add方法,复杂度O(log K)

topk方法,复杂度O(K)

更多

算法和数据结构笔记

参考资料

LintCode 550 · Top K Frequent Words II的更多相关文章

  1. [LeetCode] Top K Frequent Elements 前K个高频元素

    Given a non-empty array of integers, return the k most frequent elements. For example,Given [1,1,1,2 ...

  2. 347. Top K Frequent Elements

    Given a non-empty array of integers, return the k most frequent elements. For example,Given [1,1,1,2 ...

  3. [LeetCode] Top K Frequent Words 前K个高频词

    Given a non-empty list of words, return the k most frequent elements. Your answer should be sorted b ...

  4. C#版(打败99.28%的提交) - Leetcode 347. Top K Frequent Elements - 题解

    版权声明: 本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C#版 - L ...

  5. [leetcode]692. Top K Frequent Words K个最常见单词

    Given a non-empty list of words, return the k most frequent elements. Your answer should be sorted b ...

  6. [leetcode]347. Top K Frequent Elements K个最常见元素

    Given a non-empty array of integers, return the k most frequent elements. Example 1: Input: nums = [ ...

  7. 最高频的K个单词 · Top K Frequent Words

    [抄题]: 给一个单词列表,求出这个列表中出现频次最高的K个单词. [思维问题]: 以为已经放进pq里就不能改了.其实可以改,利用每次取出的都是顶上的最小值就行了.(性质) 不知道怎么处理k个之外的数 ...

  8. Top K Frequent Elements 前K个高频元素

    Top K Frequent Elements 347. Top K Frequent Elements [LeetCode] Top K Frequent Elements 前K个高频元素

  9. 347. Top K Frequent Elements (sort map)

    Given a non-empty array of integers, return the k most frequent elements. Example 1: Input: nums = [ ...

随机推荐

  1. Linux添加永久静态路由

    1.首先查看一下本机的路由 route -n 2.比如我们添加两条静态路由,访问192.168.142.100时通过192.168.142.10:访问192.168.142.200时通过192.168 ...

  2. VBS脚本编程(1)——数据类型、变量和常量

    数据类型 VBS只有一种数据类型,称为Variant.而该类型是可变的,以下是Variant的子类型: 子类型 描述 Empty 未初始化的Variant.对于数值变量,值为0:对于字符串变量,值为零 ...

  3. CVPR2021 | 开放世界的目标检测

    ​ 本文将介绍一篇很有意思的论文,该方向比较新,故本文保留了较多论文中的设计思路,背景知识等相关内容. 前言: 人类具有识别环境中未知对象实例的本能.当相应的知识最终可用时,对这些未知实例的内在好奇心 ...

  4. CentOS7 安装搭建docker环境

    一.Docker简介 Docker 版本 :版本分为:社区版CE  企业版EE 社区版分为stable和edge俩种发行方式: stable版本:是季度版发行(三月一更新) edge版本:是月度版发行 ...

  5. 【重学Java】Set集合

    Set集合 Set集合概述和特点[应用] 无序不可重复 没有索引,不能使用普通for循环遍历.可以使用迭代器或者增强foreach语句遍历 TreeSet集合 TreeSet集合概述和特点[应用] 无 ...

  6. Mybatis:Mybatis 逆向工程 generator配置

    一.使用Maven方式引入Mybatis依赖Jar包(版本号自己改或定义)

  7. Java:Java中equlas和==的区别

    == 比较的是栈内存的地址值,用来判断两个对象的地址是否相同,即是否是指相同一个对象.比较的是真正意义上的指针操作. 基本数据类型如:byte,short,char,int,long,float,do ...

  8. Python 脚本退出

    return:在定义函数时从函数中返回一个函数的返回值,终止函数的执行. os._exit(),sys.exit(),exit(),quit()都能够退出当前执行脚本,差别在于os._exit()直接 ...

  9. Log4cpp配置文件及动态调整日志级别的方法

    一.log4cpp概述 Log4cpp是一个开源的C++类库,它提供了C++程序中使用日志和跟踪调试的功能,它的优点如下: 提供应用程序运行上下文,方便跟踪调试: 可扩展的.多种方式记录日志,包括命令 ...

  10. 「AGC020D」 Min Max Repetition

    「AGC020D」 Min Max Repetition 传送门 首先这个东西的连续字符个数你可以二分.但事实上没有必要,这是可以直接算出来的. 即 \(k=\max\{\lceil\frac{A}{ ...