阿克曼函数(Ackermann)是非原始递归函数的例子。它需要两个自然数作为输入值,输出一个自然数。它的输出值增长速度非常快,仅是对于(4,3)的输出已大得不能准确计算。

\[A(m, n)=\left\{\begin{array}{ll}{n+1} & {m=0} \\ {A(m-1,1)} & {m>0, n=0} \\ {A(m-1, A(m, n-1))} & {m>0, n>0}\end{array}\right.
\]

因为\(m\)很小,所以我们可以针对\(0\leq m \leq 3\)来对阿克曼函数进行推导

对于阿克曼函数的具体推导过程如下:

  • 当\(m=0\)时:
\[A(0, n)=n+1
\]
  • 当\(m=1\)时:
\[\begin{aligned} A(1, n) &=A(0, A(1, n-1))=A(1, n-1)+1 \\ &=A(0, A(1, n-2))=A(1, n-2)+2 \\ &=A(0, n-3)+3 \\ & \cdots \\ &=A(1,0)+n \\ &=A(0,1)+n \\ &=n+2 \end{aligned}
\]
  • 当\(m=2\)时:
\[\begin{aligned} A(2, n) &=A(1, A(2, n-1))=A(2, n-1)+2 \\ &=A(1, A(2, n-2))+2 \\ &=A(2, n-2)+2 \times 2 \\ & \cdots \\ &=A(2,0)+2 \times n \\ &=A(1,1)+2 \times n \\ &=3+2 \times n \end{aligned}
\]
  • 当\(m=3\)时:
\[\begin{aligned} A(3, n) &=A(2, A(3, n-1)) \\ &=A(3, n-1) \times 2+3 \\ &=A(2, A(3, n-2)) \times 2+3 \\ &=(A(3, n-2) \times 2+3) \times 2+3 \\ &=2 \times 2 \times A(3, n-2)+2 \times 3+3 \\ &=2 \times 2 \times A(3, n-2)+2 \times 3+3 \\ &=2 \times 2 \times(A(3, n-2)+2 \times 3+3) \\ &=2 \times 2 \times(A(3, n-3) \times 2+3)+2 \times 3+3 \\ &=2^{n} \times A(2,1)+3 \times\left(2^{n}-1\right) \\ &=2^{n} \times 5+2^{n} \times 3-3 \\ &=2^{n+3}-3 \end{aligned}
\]

阿克曼函数推导过程(m<=3)的更多相关文章

  1. BP神经网络推导过程详解

    BP算法是一种最有效的多层神经网络学习方法,其主要特点是信号前向传递,而误差后向传播,通过不断调节网络权重值,使得网络的最终输出与期望输出尽可能接近,以达到训练的目的. 一.多层神经网络结构及其描述 ...

  2. 1029 C语言文法定义与C程序的推导过程

    1 阅读并理解提供给大家的C语言文法文件. 2 参考该文件写出一个自己好理解版的现实版的完整版的C语言文法. 3 给出一段C程序,写出用上述文法产生这段C程序的推导过程. program → exte ...

  3. 吴恩达深度学习第1课第4周-任意层人工神经网络(Artificial Neural Network,即ANN)(向量化)手写推导过程(我觉得已经很详细了)

    学习了吴恩达老师深度学习工程师第一门课,受益匪浅,尤其是吴老师所用的符号系统,准确且易区分. 遵循吴老师的符号系统,我对任意层神经网络模型进行了详细的推导,形成笔记. 有人说推导任意层MLP很容易,我 ...

  4. XGBoost 完整推导过程

    参考: 陈天奇-"XGBoost: A Scalable Tree Boosting System" Paper地址: <https://arxiv.org/abs/1603 ...

  5. 关于opengl中的矩阵平移,矩阵旋转,推导过程理解 OpenGL计算机图形学的一些必要矩阵运算知识

    原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/12166896.html 为什么引入齐次坐标的变换矩阵可以表示平移呢? - Yu Mao的回答 ...

  6. [ML从入门到入门] 支持向量机:从SVM的推导过程到SMO的收敛性讨论

    前言 支持向量机(Support Vector Machine,SVM)在70年代由苏联人 Vladimir Vapnik 提出,主要用于处理二分类问题,也就是研究如何区分两类事物. 本文主要介绍支持 ...

  7. 1014 C语言文法定义与C程序的推导过程 程序:冒泡算法C程序(语法树)

    阅读并理解提供给大家的C语言文法文件. 参考该文件写出一个自己好理解版的现实版的完整版的C语言文法. 给出一段C程序,画出用上述文法产生这段C程序的完整语法树. 程序:冒泡算法C程序 点此文字查看原图 ...

  8. PL/SQL --> 动态SQL调用包中函数或过程

    动态SQL主要是用于针对不同的条件或查询任务来生成不同的SQL语句.最常用的方法是直接使用EXECUTE IMMEDIATE来执行动态SQL语句字符串或字符串变量.但是对于系统自定义的包或用户自定的包 ...

  9. .Net程序员学用Oracle系列(7):视图、函数、过程、包

    <.Net程序员学用Oracle系列:导航目录> 本文大纲 1.视图 1.1.创建视图 2.函数 2.1.创建函数 2.2.调用函数 3.过程 3.1.创建过程 3.2.调用过程 4.包 ...

随机推荐

  1. C/C++ Qt StandardItemModel 数据模型应用

    QStandardItemModel 是标准的以项数据为单位的基于M/V模型的一种标准数据管理方式,Model/View 是Qt中的一种数据编排结构,其中Model代表模型,View代表视图,视图是显 ...

  2. Ubuntu apt代理apt-cacher-ng配置及使用

    apt-cacher-ng是更强大的apt代理服务器的替代方案,例如squid-deb-proxy.如果您正在运行小型家庭或办公室网络,那就别无所求.它可能缺少一些更高级的功能,但是可以立即进行配置, ...

  3. 这份github上被14万人点赞的Java教程太强了

    前几天有个小伙伴加我之后问了下面的这个问题.我看到后是一脸懵逼的状态,jcombobox?实话说,我已经完全忘了在Java中还有这么个东西. 在网上一番搜索后,才发现原来它是 swing 中的下拉列表 ...

  4. C语言中的各种类型所占的字节大小

    一)64位系统和32位有什么区别?  1.64bit CPU拥有更大的寻址能力,最大支持到16GB内存,而32bit只支持4G内存 2.64位CPU一次可提取64位数据,比32位提高了一倍,理论上性能 ...

  5. nodeJs-process对象

    JavaScript 标准参考教程(alpha) 草稿二:Node.js process对象 GitHub TOP process对象 来自<JavaScript 标准参考教程(alpha)&g ...

  6. 【Linux】【Shell】【Basic】数组

    1. 数组:         变量:存储单个元素的内存空间:         数组:存储多个元素的连续的内存空间:             数组名:整个数组只有一个名字:             数组 ...

  7. AOP中环绕通知的书写和配置

    package com.hope.utils;import org.aspectj.lang.ProceedingJoinPoint;import org.aspectj.lang.annotatio ...

  8. 【Git】【Gitee】通过git远程删除仓库文件

    安装Git Git安装配置-菜鸟教程 没有安装下载的,请读者自行安装下载. 启动与初步配置 配置用户名与邮箱 git config --global user.name "用户名" ...

  9. SharedWorker实现多标签页联动计时器

    web workers对于每个前端开发者并不陌生,在mdn中的定义:Web Worker为Web内容在后台线程中运行脚本提供了一种简单的方法.线程可以执行任务而不干扰用户界面.此外,他们可以使用XML ...

  10. 可扩展标记语言XML(淅淅沥沥的小雨)

    XML简述 XML用于描述数据,是当前处理结构化文档信息的有力工具.与操作系统编程语言的开发平台无关,可以实现不同系统之间的数据交互. xml文件结构: 1 <?xml version=&quo ...