Tomczak J. and Welling M. Improving Variational Auto-Encoders using Householder Flow. NIPS workshop: Bayesian Deep Learning, 2016.

本文介绍了一种Normalizing FLow, 利用Householder变换.

主要内容

我们一般假设

\[q_{\phi} (z|x) = \mathcal{N}(z| \mu(x), \sigma^2(x)),
\]

但是常被人诟病的一点就是这个假设太粗暴简单了.

我们知道一个服从正态分布的随机变量\(z\)经过一个线性变化依旧是服从正态分布, 即

\[Uz \sim \mathcal{N}(U\mu(x), U \mathrm{diag}(\sigma^2(x))U^T).
\]

倘若\(U\)是正交矩阵, 则\(q(z_1) = q(z)\), 则我们即让让分布更加灵活, 但不让计算变得复杂, 这种特殊的normalizing flow 是 volume preserving flow.

因为任意的正交矩阵都能够表示成

\[U = H_K H_{K-1} \cdots H_1,
\]

\(H\)是形如\(I - c \cdot v v^T\)的矩阵.

所以本文的设想是:

  1. Encoder 输出\(z^0, v^0\);
  2. 通过\(v^0\)构造\(H_0\)
\[H_0 = (I - 2 \frac{v_0v_0^T}{\|v_0\|^2_2});
\]
  1. 得到\(z^1 = H_0 z^0\);
  2. 利用一个新的网络得到\(v^1 = f_1(v_0)\);
  3. 以此类推, 得到最后的\(z^T\).

这就是整个flow.

代码

原文代码

Improving Variational Auto-Encoders using Householder Flow的更多相关文章

  1. Improved Variational Inference with Inverse Autoregressive Flow

    目录 概 主要内容 代码 Kingma D., Salimans T., Jozefowicz R., Chen X., Sutskever I. and Welling M. Improved Va ...

  2. [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization

    About this Course This course will teach you the "magic" of getting deep learning to work ...

  3. (转)Awesome PyTorch List

    Awesome-Pytorch-list 2018-08-10 09:25:16 This blog is copied from: https://github.com/Epsilon-Lee/Aw ...

  4. 机器学习前沿热点——Deep Learning

    深度学习是机器学习研究中的一个新的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像.声音和文本.深度学习是无监督学习的一种. 深度学习的概念源于人工神经网络的 ...

  5. (转)Deep Learning深度学习相关入门文章汇摘

    from:http://farmingyard.diandian.com/post/2013-04-07/40049536511 来源:十一城 http://elevencitys.com/?p=18 ...

  6. [Python] 机器学习库资料汇总

    声明:以下内容转载自平行宇宙. Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy.其中Numpy是一个用python实现的科学计算包.包括: 一个强大的N维数组对象Array: ...

  7. python数据挖掘领域工具包

    原文:http://qxde01.blog.163.com/blog/static/67335744201368101922991/ Python在科学计算领域,有两个重要的扩展模块:Numpy和Sc ...

  8. Theano3.1-练习之初步介绍

    来自 http://deeplearning.net/tutorial/,虽然比较老了,不过觉得想系统的学习theano,所以需要从python--numpy--theano的顺序学习.这里的资料都很 ...

  9. [resource]Python机器学习库

    reference: http://qxde01.blog.163.com/blog/static/67335744201368101922991/ Python在科学计算领域,有两个重要的扩展模块: ...

随机推荐

  1. Spark检查点机制

    Spark中对于数据的保存除了持久化操作之外,还提供了一种检查点的机制,检查点(本质是通过将RDD写入Disk做检查点)是为了通过lineage(血统)做容错的辅助,lineage过长会造成容错成本过 ...

  2. 零基础学习java------day8------javabean编写规范,继承,static关键字,代码块,单例设计模式

    0. 今日内容提要 1. javabean书写规范 javabean:一个普通的类,用来描述事物的类,里面不包含任何的业务逻辑,只是用来存储数据. 比如:Teacher,Student,Mobile. ...

  3. 商业爬虫学习笔记day7-------解析方法之bs4

    一.Beautiful Soup 1.简介 Beautiful Soup 是python的一个库,最主要的功能是从网页抓取数据.其特点如下(这三个特点正是bs强大的原因,来自官方手册) a. Beau ...

  4. ios加载html5 audio标签用js无法自动播放

    html5 audio标签在ios 微信浏览器中是无法自动播放的,最近在做一个小的项目遇到这个问题,安卓和pc都是正常的,唯独ios不行,查阅了很多资料,找到了以下方法,也许不是最好用的方法,如果有更 ...

  5. Angular @ViewChild,Angular 中的 dom 操作

    Angular 中的 dom 操作(原生 js) ngAfterViewInit(){ var boxDom:any=document.getElementById('box'); boxDom.st ...

  6. 【XSS】再谈CSP内容安全策略

    再谈CSP内容安全策略 之前每次都是想的很浅,或者只是个理论派,事实证明就是得动手实践 参考 CSP的用法 官方文档 通过设置属性来告诉浏览器允许加载的资源数据来源.可通过Response响应头来设置 ...

  7. Dubbo服务限流

    为了防止某个消费者的QPS或是所有消费者的QPS总和突然飙升而导致的重要服务的失效,系统可以对访问流量进行控制,这种对集群的保护措施称为服务限流. Dubbo中能够实现服务限流的方式较多,可以划分为两 ...

  8. 1.RabbitMQ

    1.RabbitMq是什么?    MQ全称为Message Queue,即消息队列, RabbitMQ是由erlang语言开发,基于AMQP(Advanced Message Queue 高级消息队 ...

  9. MVC+Servlet+mysql+jsp读取数据库信息

    首先有以下几个包: 1.controller 控制层,对用户的请求进行响应 2.dao 数据层接口标准 3.daoimpl 数据层实现层 4.model 实体类层 5.service 业务层接口标准 ...

  10. 如何简单的理解LSTM——其实没有那么复杂(转载)

    转载地址:https://www.jianshu.com/p/4b4701beba92 1.循环神经网络 人类针对每个问题的思考,一般不会是完全的从头开始思考.正如当你阅读这篇译文的时候,你会根据已经 ...