Maclaurin D, Duvenaud D, Adams R P, et al. Gradient-based Hyperparameter Optimization through Reversible Learning[J]. arXiv: Machine Learning, 2015.

@article{maclaurin2015gradient-based,

title={Gradient-based Hyperparameter Optimization through Reversible Learning},

author={Maclaurin, Dougal and Duvenaud, David and Adams, Ryan P},

journal={arXiv: Machine Learning},

year={2015}}

本文给出了利用梯度更新超参数的方法(低memory消耗).

主要内容

假设第\(t=1,\ldots, T\)次训练的损失函数为\(L(\mathbf{w}, \mathbf{\theta}, t)\), 其中\(\mathbf{w}\)是网络的权重, \(\mathbf{\theta}\)是指超参数.

进行一次meta-iteration(即T次训练之后), 我们利用验证集对其验证, 设其损失为\(f(\mathbf{w})\), 我们知道, 因为\(\mathbf{w}\)实际上是\(\mathbf{\theta}\)的函数, 我们求\(f(\mathbf{w})\)关于\(\mathbf{\theta}\)的梯度, 并更新\(\mathbf{\theta}\).

但是如果只是单纯地反向转递梯度,我们需要构建一个包含\(t=1,\ldots,T\)的图, 这是十分消耗memory的. 本文的贡献便是提出一种算法来解决此问题.

下图为利用SGD(带momentum)训练权重\(\mathbf{w}\)的过程:

算法

假设meta-iteration后的权重为\(\mathbf{w}_T\), 我们利用此来一步一步地恢复前面的信息, 并且逐步计算有关超参数的导数.

算法中, 6, 7, 8实际上是SGD的一个逆行, 用以恢复\(\mathbf{w}_{t-1}, \mathbf{g}_t,\mathbf{v}_{t-1}\), 注意到, 9, 10计算了俩次\(d\mathbf{v}\), 实际上第一次作为中间变量以计算超参数的导数, 后一次是为下一次进行准备(算法中的公式都是容易推出的).

需要注意的是, 我们在恢复的过程中用到了\(\nabla\)甚至\(\nabla \nabla\), 个人认为这些是在SGD训练的时候保存下来的.

finite precision arithmic

实验

3.1

Meta-optimization strategies: 将学习率作为超参数;

How smooth are hypergradients?: 探究损失关于超参数是否光滑(即导数是否连续).

Optimizing weight initialization scales: 将初始化超参数的scale作为超参数.

3.2

将正则化参数作为超参数.

3.3

将训练样本作为超参数.

3.4

...

3.5

如何优化网络结构, 因为网络结构是一种离散化的超参数, 所以...

Gradient-based Hyperparameter Optimization through Reversible Learning的更多相关文章

  1. [CS231n-CNN] Training Neural Networks Part 1 : activation functions, weight initialization, gradient flow, batch normalization | babysitting the learning process, hyperparameter optimization

    课程主页:http://cs231n.stanford.edu/   Introduction to neural networks -Training Neural Network ________ ...

  2. DAGs with NO TEARS: Continuous Optimization for Structure Learning

    DAGs with NO TEARS: Continuous Optimization for Structure Learning 目录 DAGs with NO TEARS: Continuous ...

  3. 论文笔记系列-Speeding Up Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapolation of Learning Curves

    I. 背景介绍 1. 学习曲线(Learning Curve) 我们都知道在手工调试模型的参数的时候,我们并不会每次都等到模型迭代完后再修改超参数,而是待模型训练了一定的epoch次数后,通过观察学习 ...

  4. Federated Optimization: Distributed Machine Learning for On-Device Intelligence

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1610.02527v1 [cs.LG] 8 Oct 2016 坐标下降法:https://blog.csdn.net/qq_ ...

  5. 斯坦福大学公开课机器学习:梯度下降运算的学习率a(gradient descent in practice 2:learning rate alpha)

    本章节主要讲怎么确定梯度下降的工作是正确的,第二是怎么选择学习率α,如下图所示: 上图显示的是梯度下降算法迭代过程中的代价函数j(θ)的值,横轴是迭代步数,纵轴是j(θ)的值 如果梯度算法正常工作,那 ...

  6. A novel multi-swarm particle swarm optimization with dynamic learning strategy(一种新颖的具有动态学习策略的多种群粒子群优化算法)

    1.核心 在每个子种群的粒子被划分为普通粒子(ordinary particles)和交流粒子(communication particles),在每次迭代过程中,不同的粒子执行不同的进化操作.普通粒 ...

  7. How to Evaluate Machine Learning Models, Part 4: Hyperparameter Tuning

    How to Evaluate Machine Learning Models, Part 4: Hyperparameter Tuning In the realm of machine learn ...

  8. arXiv 2015深度学习年度十大论文

    由康奈尔大学运营维护着的arXiv网站,是一个在学术论文还未被出版时就将之向所有人开放的地方.这里汇聚了无数科学领域中最前沿的研究,机器学习也包括在内.它反映了学术界当前的整体趋势,我们看到,近来发布 ...

  9. 机器学习超参数优化算法-Hyperband

    参考文献:Hyperband: Bandit-Based Configuration Evaluation for Hyperparameter Optimization I. 传统优化算法 机器学习 ...

随机推荐

  1. 零基础学习java------day5------do....while循环、嵌套、方法(函数)

    1  do...while循环 格式 初始化语句; do { 循环体语句; 控制条件语句; }while(判断条件语句); 流程: 先执行初始化语句 再执行循环体语句 再执行条件控制语句 再做条件的判 ...

  2. 「译」 .NET 6 中 gRPC 的新功能

    gRPC是一个现代的.跨平台的.高性能的 RPC 框架.gRPC for .NET 构建在 ASP.NET Core 之上,是我们推荐的在 .NET 中构建 RPC 服务的方法. .NET 6 进一步 ...

  3. NSURLConnection和Runloop

    - 1.1 涉及知识点(1)两种为NSURLConnection设置代理方式的区别 //第一种设置方式: //通过该方法设置代理,会自动的发送请求 // [[NSURLConnection alloc ...

  4. redis入门到精通系列(五):redis的持久化操作(RDB、AOF)

    (一)持久化的概述 持久化顾名思义就是将存储在内存的数据转存到硬盘中.在生活中使用word等应用的时候,如果突然遇到断电的情况,理论上数据应该是都不见的,因为没有保存的word内容都存放在内存里,断电 ...

  5. 【编程思想】【设计模式】【结构模式Structural】桥梁模式/桥接模式bridge

    Python版 https://github.com/faif/python-patterns/blob/master/structural/bridge.py #!/usr/bin/env pyth ...

  6. Java易错小结

    String 相关运算 String使用是注意是否初始化,未初始化的全部为null.不要轻易使用 string.isEmpty()等,首先确保string非空. 推荐使用StringUtils.isN ...

  7. 创建线程的第二种方式------实现Runnable接口的方式

    package cn.itcast.demo16.Demo07.Runnable;/** * @author newcityman * @date 2019/7/22 - 23:17 */public ...

  8. 【Matlab】线性调频信号LFM 仿真

    [知识点] 生成序列 i = a:step:b 举例: i = 1:1:9 画图(子图) subplot(m,n,p)或者subplot(m n p) 总结起来就是,画一个m行n列的图. p表示在第p ...

  9. netty系列之:性能为王!创建多路复用http2服务器

    目录 简介 多路复用的基础 多路复用在server端的使用 配置TLS处理器 配置clear text upgrade 总结 简介 在之前的文章中,我们提到了在netty的客户端通过使用Http2Fr ...

  10. time_formatter(uaf)

    拿到题目先例行检查 然后进入主函数查看程序流程, 进入函数 这些字符串对我们选择1的输入进行了限制 在输入里面,可以看到strdup这个关键性的函数 调用了malloc这个函数 在选择四里面,可以看到 ...