本文介绍LinkedBlockingQueue,这个队列在线程池中常用到。(请结合源码,看本文)

1. 介绍

LinkedBlockingQueue, 不支持null,基于单向链表的可选有界阻塞队列。队列的顺序是FIFO。基于链表的队列通常比基于数组的队列更高的吞吐量, 但在大多数的并发应用中具有更低的可预测性能较差(这句话,在最后解释一下)

如果不选择队列的容量,默认值是Integer.MAX_VALUE,为了防止队列的过度扩张.

还实现了Collection接口Iterator接口中所有的可选方法。

1.1 结构

public class LinkedBlockingQueue<E> extends AbstractQueue<E>
implements BlockingQueue<E>, java.io.Serializable

LinkedBlockingQueue类图

LinkedBlockingQueue的构造器

    public LinkedBlockingQueue() {
this(Integer.MAX_VALUE);
} public LinkedBlockingQueue(int capacity) {
if (capacity <= 0) throw new IllegalArgumentException();
this.capacity = capacity;
// head与last指向哨兵节点
last = head = new Node<E>(null);
} public LinkedBlockingQueue(Collection<? extends E> c)
...

1.2 保证线程安全

LinkedBlockingQueue的底层使用ReetrantLock保证线程安全,其实就是一个"消费-生产"模型,通过本文我们还可以学到ReetrantLock的实际使用场景。


/** Lock held by take, poll, etc */
private final ReentrantLock takeLock = new ReentrantLock(); /** Wait queue for waiting takes */
private final Condition notEmpty = takeLock.newCondition(); /** Lock held by put, offer, etc */
private final ReentrantLock putLock = new ReentrantLock(); /** Wait queue for waiting puts */
private final Condition notFull = putLock.newCondition(); /**
* Signals a waiting take. Called only from put/offer (which do not
* otherwise ordinarily lock takeLock.)
*/
private void signalNotEmpty() {
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {
notEmpty.signal();
} finally {
takeLock.unlock();
}
} /**
* Signals a waiting put. Called only from take/poll.
*/
private void signalNotFull() {
final ReentrantLock putLock = this.putLock;
putLock.lock();
try {
notFull.signal();
} finally {
putLock.unlock();
}
}

2. 源码分析

在讲LinkedBlockingQueue前,我们先看看需要它实现的接口BlockingQueue

2.1 BlockingQueue

实现了BlockingQueue的类,必须额外支持在查找元素时,等待队列直到非空为止的操作;在储存元素的时候,要等待队列的空间可用为止。

它的方法有四种形式,处理不能立即满足但是未来可能满足的操作的方式各有不同。

  1. 直接抛出异常
  2. 返回一个特殊值(null 或者 false)
  3. 一直等待,直到操作成功
  4. 超时设定,超过时间就放弃

我们知道了不同方法,不能立即满足的不同的处理方式,这样我们下面就更好理解LinkedBlockingQueue的源码了。

下面我们从

  • offer(e)
  • offer(e, time, unit)
  • put(e)
  • poll()

    去分析一下LinkedBlockingQueue

2.2 offer(e)

添加成功就返回true; 插入值为null或队列已满,返回false。队列满了直接返回,会丢弃e,不会等待队列空闲

   public boolean offer(E e) {
if (e == null) throw new NullPointerException();
final AtomicInteger count = this.count;
// 队列的容量满了,就直接返回了
if (count.get() == capacity)
return false;
int c = -1;
Node<E> node = new Node<E>(e);
final ReentrantLock putLock = this.putLock;
putLock.lock();
try {
if (count.get() < capacity) {
enqueue(node);
c = count.getAndIncrement();
if (c + 1 < capacity)
notFull.signal();
}
} finally {
putLock.unlock();
}
if (c == 0)
signalNotEmpty();
return c >= 0;
}

代码较简单,就不细讲了。

2.3 offer(e, time, unit)

若队列已满,还没超过设定的时间,就等待,等待时,会对中断作出反应;若超过了设定的时间,操作就跟offer(E e)一样了

 public boolean offer(E e, long timeout, TimeUnit unit)
throws InterruptedException { if (e == null) throw new NullPointerException();
long nanos = unit.toNanos(timeout);
int c = -1;
final ReentrantLock putLock = this.putLock;
final AtomicInteger count = this.count;
putLock.lockInterruptibly();
try {
while (count.get() == capacity) {
// 队列已满,超过了特定的时间才会返回false
if (nanos <= 0)
return false;
nanos = notFull.awaitNanos(nanos);
}
enqueue(new Node<E>(e));
c = count.getAndIncrement();
if (c + 1 < capacity)
notFull.signal();
} finally {
putLock.unlock();
}
if (c == 0)
signalNotEmpty();
return true;
}

2.4 put(e)

一直等待直到成功或者被中断

 public void put(E e) throws InterruptedException {
if (e == null) throw new NullPointerException();
// Note: convention in all put/take/etc is to preset local var
// holding count negative to indicate failure unless set.
int c = -1;
Node<E> node = new Node<E>(e);
final ReentrantLock putLock = this.putLock;
final AtomicInteger count = this.count;
putLock.lockInterruptibly();
try {
// 防止虚假唤醒
while (count.get() == capacity) {
notFull.await();
}
enqueue(node);
c = count.getAndIncrement();
if (c + 1 < capacity)
notFull.signal();
} finally {
putLock.unlock();
}
if (c == 0)
signalNotEmpty();
}

我没有想到,上面发生虚假唤醒的场景(如果知道的同学,请告诉我一下,谢谢了)。

it is recommended that applications programmers always assume that they can occur and so always wait in a loop. --Condition

反正使用Condition在循环里等待就对了

2.5 poll()

队列为空时,直接返回null,不会await;非阻塞方法

    public E poll() {
final AtomicInteger count = this.count;
if (count.get() == 0)
return null;
E x = null;
int c = -1;
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {
if (count.get() > 0) {
x = dequeue();
c = count.getAndDecrement();
if (c > 1)
notEmpty.signal();
}
} finally {
takeLock.unlock();
}
if (c == capacity)
signalNotFull();
return x;
}

其余的方法其实都是类似的,直接看上面BlockingQueue的四种方式。

最后再讲一个方法remove(Object o), 将会提及一个知识点。

2.6 remove

删除o, 若成功就返回true,反之.

 public boolean remove(Object o) {
if (o == null) return false;
fullyLock();
try {
// 算法题,删除某一个链表的结点,可以看一下源码,记录两个结点,一个在前,一个在后。
for (Node<E> trail = head, p = trail.next;
p != null;
trail = p, p = p.next) {
if (o.equals(p.item)) {
unlink(p, trail);
return true;
}
}
return false;
} finally {
fullyUnlock();
}
}

上面的代码是简单的对链表的操作,我们主要是看fullyLock()fullyUnlock()的代码


/**
* Locks to prevent both puts and takes.
*/
void fullyLock() {
putLock.lock();
takeLock.lock();
} /**
* Unlocks to allow both puts and takes.
*/
void fullyUnlock() {
takeLock.unlock();
putLock.unlock();
}

我们都知道解锁顺序应该与获取锁顺序相反,那么是为什么啦

其实我并不觉得,上面的fullyUnlock解锁顺序与获取锁的顺序如果是相同的会出什么问题,也并不会出现死锁(如果释放锁与获取锁,中间还存在其他操作就另当别论了)。那它仅仅是为了代码的好看?

假如,我们有下面这段代码(解锁与获取锁中间有其他操作)

A.lock();
B.lock();
Foo();
A.unlock();
Bar();
B.unlock();

假设Bar()是要去重新获取A锁的。

时刻一: 线程X运行到了Bar()A锁没有被其他线程获取,此时线程X持有B锁,要去获取A锁

时刻二: 线程Y运行到代码的最前面,A.lock(),获取到了A锁,此时线程Y持有A锁,要去获取B锁,此时才会造成死锁。

解锁顺序与获取锁顺序相反,为的是

  1. 避免上面那种情况造成死锁
  2. 为了美观

3. 总结

LinkedBlockingQueue线程安全的队列

  • 使用putLocktakeLock分别对增加删除操作保证其线程安全性
  • 是一个有界(默认值为Integer.MAX_VALUE)的底层基于单向链表的队列

解释一下,相对于基于数组的队列,链表队列的可预测性能较差(less predictable performance in most concurrent applications)这句话

我认为是,数组是在初始化会分配"一块连续的内存",而链表是在队列添加元素时动态的分配内存地址的,是不连续的;还有就是它将会处理更多的内存结构,每个元素存在一个链表的节点。

This means that it has to flush more dirty memory pages between processors when synchronizing.

4. 参考

JAVA并发(5)-并发队列LinkedBlockingQueue的分析的更多相关文章

  1. java并发之阻塞队列LinkedBlockingQueue与ArrayBlockingQueue

    Java中阻塞队列接口BlockingQueue继承自Queue接口,并提供put.take阻塞方法.两个主要的阻塞类实现是ArrayBlockingQueue和LinkedBlockingQueue ...

  2. Java中的阻塞队列-LinkedBlockingQueue(二)

    原文地址:http://benjaminwhx.com/2018/05/11/%E3%80%90%E7%BB%86%E8%B0%88Java%E5%B9%B6%E5%8F%91%E3%80%91%E8 ...

  3. 细说并发5:Java 阻塞队列源码分析(下)

    上一篇 细说并发4:Java 阻塞队列源码分析(上) 我们了解了 ArrayBlockingQueue, LinkedBlockingQueue 和 PriorityBlockingQueue,这篇文 ...

  4. 细说并发4:Java 阻塞队列源码分析(上)

    上篇文章 趣谈并发3:线程池的使用与执行流程 中我们了解到,线程池中需要使用阻塞队列来保存待执行的任务.这篇文章我们来详细了解下 Java 中的阻塞队列究竟是什么. 读完你将了解: 什么是阻塞队列 七 ...

  5. java并发:阻塞队列

    第一节 阻塞队列 1.1 初识阻塞队列 队列以一种先进先出的方式管理数据,阻塞队列(BlockingQueue)是一个支持两个附加操作的队列,这两个附加的操作是:在队列为空时,获取元素的线程会等待队列 ...

  6. 【Java并发】并发队列与线程池

    并发队列 阻塞队列与非阻塞队 ConcurrentLinkedQueue BlockingQueue ArrayBlockingQueue LinkedBlockingQueue PriorityBl ...

  7. 聊聊并发(七)——Java中的阻塞队列

    3. 阻塞队列的实现原理 聊聊并发(七)--Java中的阻塞队列 作者 方腾飞 发布于 2013年12月18日 | ArchSummit全球架构师峰会(北京站)2016年12月02-03日举办,了解更 ...

  8. Java并发系列[2]----AbstractQueuedSynchronizer源码分析之独占模式

    在上一篇<Java并发系列[1]----AbstractQueuedSynchronizer源码分析之概要分析>中我们介绍了AbstractQueuedSynchronizer基本的一些概 ...

  9. Java并发系列[3]----AbstractQueuedSynchronizer源码分析之共享模式

    通过上一篇的分析,我们知道了独占模式获取锁有三种方式,分别是不响应线程中断获取,响应线程中断获取,设置超时时间获取.在共享模式下获取锁的方式也是这三种,而且基本上都是大同小异,我们搞清楚了一种就能很快 ...

随机推荐

  1. java面试一日一题:讲下mysql中的undolog

    问题:请讲下mysql中undo log的作用 分析:mysql中有很多日志,例,bin log undo log redo log,要弄清楚这些日志的作用,就要了解这些日志出现的背景及要解决的问题: ...

  2. 从零开始使用git将本地项目上传到GitHub

    直接进入主题 1. 注册GitHub(官网:https://github.com/),打开官网,右上角点击sign up注册按钮,进入注册界面,根据提示填写信息注册. ​

  3. 路由协议之OSPF

    目录 OSPF协议 OSPF的七种状态 OSPF的11种LSA Stub和Nssa OSPF中的防环机制 OSPF中的路由汇总和路由过滤 OSPF中的虚拟链路 虚拟链路有两种存在的意义 OSPF中的认 ...

  4. Python数模笔记-Sklearn(1) 介绍

    1.SKlearn 是什么 Sklearn(全称 SciKit-Learn),是基于 Python 语言的机器学习工具包. Sklearn 主要用Python编写,建立在 Numpy.Scipy.Pa ...

  5. 『政善治』Postman工具 — 11、Postman中对Cookie的操作

    目录 1.关联接口说明 2.测试关联接口实现步骤 3.补充:Postman中将请求转换成代码 上一篇文章说明了Postman中关于Cookie的相关操作,还是以Cookie举例,来说明下一在Postm ...

  6. Zoho Projects助力企业项目高效管理

    挑选项目管理工具,就和人买衣服.买鞋子是一样的,除了看外观,最重要的是合适.随着项目管理工具的不断发展,市面上有很多工具都非常优秀,也能解决企业.团队的实际需求. 对于项目管理来说,最重要的在于人员协 ...

  7. 大量客户名片如何轻松导入到CRM系统里?

    当您组织或参与了一次线下活动或展会,肯定会收集到非常多的潜在客户的名片.这个时候您是不是在发愁如何将这些信息导入到CRM系统中? 可以想到,您肯定会将这些名片分发给销售人员,让他们手动录入--这也确实 ...

  8. MySQL之数据定义语言(DDL)

    写在前面 本文中 [ 内容 ] 代表啊可选项,即可写可不写. SQL语言的基本功能介绍 SQL是一种结构化查询语言,主要有如下几个功能: 数据定义语言(DDL):全称Data Definition L ...

  9. libminipng,压缩png的swift-framework

    libminipng 通过lodepng解析png图片,使用pngquant算法进行压缩的swift-framework 方法说明: /// 通过PNG图片Data压缩 /// /// - Param ...

  10. Kibana常用语法

    GET brand201811_v2/_search 方法一:查询数据源,及相关url的文章 { "query": { "bool": { "must ...