「CF643G」 Choosing Ads

传送门

如果你知道摩尔投票法可以扩展事实上是个一眼题,又好写又好调。

首先摩尔投票法是用来求众数定义为超过所有数个数一半的数的一个算法。

大致算法流程:

  • 将第一个数其设为我们预选的众数,并给其一个权值 \(w=1\)
  • 接下来,每当我们遍历一个数,若其与预选的众数相同,便使其权值加一,否则使其减一。
  • 若预选的众数权值变为 \(0\),则将使其变为 \(0\) 的这个数设为预选的众数。

最后留下的数就是答案。

然后这东西显然可以通过线段树进行合并。

然后这个东西你发现,如果我们不止预选一个数,而是预选 \(k\) 个数,我们就可以求出出现概率超过 \(\frac {1}{k+1}\) 的众数。

然后这个题就没了。

/*---Author:HenryHuang---*/
/*---Never Settle---*/
#include<bits/stdc++.h>
using namespace std;
const int maxn=1.5e5+5;
vector<pair<int,int> > tree[maxn<<2];
int tag[maxn<<2];
int n,m,p;
int a[maxn];
vector<pair<int,int> > merge(vector<pair<int,int> > a,vector<pair<int,int> > b){
for(auto [x,y]:b){
int flag=0;
for(auto &[xx,yy]:a){
if(xx==x){
yy+=y,flag=1;
break;
}
}
if(flag) continue;
a.emplace_back(x,y);
if((int)a.size()<=p) continue;
int mn=n;
for(auto [xx,yy]:a) mn=min(mn,yy);
vector<pair<int,int> > tmp;
for(auto [xx,yy]:a)
if(yy-mn) tmp.emplace_back(xx,yy-mn);
a=tmp;
}
return a;
}
void reset(int t,int len,int num){
tree[t].clear();
tree[t].emplace_back(num,len);
}
void down(int t,int ls,int rs){
if(tag[t]){
tag[t<<1]=tag[t],tag[t<<1|1]=tag[t];
reset(t<<1,ls,tag[t]),reset(t<<1|1,rs,tag[t]);
tag[t]=0;
}
}
void build(int l,int r,int t){
if(l==r){
tree[t].emplace_back(a[l],1);
return ;
}
int mid=(l+r)>>1;
build(l,mid,t<<1);
build(mid+1,r,t<<1|1);
tree[t]=merge(tree[t<<1],tree[t<<1|1]);
}
void modify(int ll,int rr,int l,int r,int num,int t){
if(ll<=l&&r<=rr){
reset(t,r-l+1,num),tag[t]=num;
return ;
}
int mid=(l+r)>>1;
down(t,mid-l+1,r-mid);
if(ll<=mid) modify(ll,rr,l,mid,num,t<<1);
if(rr>mid) modify(ll,rr,mid+1,r,num,t<<1|1);
tree[t]=merge(tree[t<<1],tree[t<<1|1]);
}
vector<pair<int,int> > query(int ll,int rr,int l,int r,int t){
if(ll<=l&&r<=rr) return tree[t];
int mid=(l+r)>>1;
down(t,mid-l+1,r-mid);
vector<pair<int,int> > tmp;
if(ll<=mid) tmp=merge(tmp,query(ll,rr,l,mid,t<<1));
if(rr>mid) tmp=merge(tmp,query(ll,rr,mid+1,r,t<<1|1));
return tmp;
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n>>m>>p;p=100/p;
for(int i=1;i<=n;++i) cin>>a[i];
build(1,n,1);
for(int i=1;i<=m;++i){
int opt,l,r,v;cin>>opt>>l>>r;
if(opt==1){
cin>>v;
modify(l,r,1,n,v,1);
}
else{
auto ans=query(l,r,1,n,1);
cout<<ans.size()<<' ';
for(auto [x,y]:ans) cout<<x<<' ';
cout<<'\n';
}
}
return 0;
}

「CF643G」 Choosing Ads的更多相关文章

  1. 「AGC025D」 Choosing Points

    「AGC025D」 Choosing Points 神仙构造题. 首先你会尝试暴力做,先随便选一个点,然后把当前能选得全选上,然后你发现这样样例都过不了. 然后我们可以这样考虑:你把距离为 \(\sq ...

  2. 题解-CF643G Choosing Ads

    CF643G Choosing Ads \(n\) 和 \(m\) 和 \(p\) 和序列 \(a_i(1\le i\le n)\).\(m\) 种如下操作: 1 l r id 令 \(i\in[l, ...

  3. 「译」JUnit 5 系列:条件测试

    原文地址:http://blog.codefx.org/libraries/junit-5-conditions/ 原文日期:08, May, 2016 译文首发:Linesh 的博客:「译」JUni ...

  4. 「译」JUnit 5 系列:扩展模型(Extension Model)

    原文地址:http://blog.codefx.org/design/architecture/junit-5-extension-model/ 原文日期:11, Apr, 2016 译文首发:Lin ...

  5. JavaScript OOP 之「创建对象」

    工厂模式 工厂模式是软件工程领域一种广为人知的设计模式,这种模式抽象了创建具体对象的过程.工厂模式虽然解决了创建多个相似对象的问题,但却没有解决对象识别的问题. function createPers ...

  6. 「C++」理解智能指针

    维基百科上面对于「智能指针」是这样描述的: 智能指针(英语:Smart pointer)是一种抽象的数据类型.在程序设计中,它通常是经由类型模板(class template)来实做,借由模板(tem ...

  7. 「JavaScript」四种跨域方式详解

    超详细并且带 Demo 的 JavaScript 跨域指南来了! 本文基于你了解 JavaScript 的同源策略,并且了解使用跨域跨域的理由. 1. JSONP 首先要介绍的跨域方法必然是 JSON ...

  8. 「2014-5-31」Z-Stack - Modification of Zigbee Device Object for better network access management

    写一份赏心悦目的工程文档,是很困难的事情.若想写得完善,不仅得用对工具(use the right tools),注重文笔,还得投入大把时间,真心是一件难度颇高的事情.但,若是真写好了,也是善莫大焉: ...

  9. 「2014-3-18」multi-pattern string match using aho-corasick

    我是擅(倾)长(向)把一篇文章写成杂文的.毕竟,写博客记录生活点滴,比不得发 paper,要求字斟句酌八股结构到位:风格偏杂文一点,也是没人拒稿的.这么说来,arxiv 就好比是 paper 世界的博 ...

随机推荐

  1. Go语言流程控制03--goto跳转到任意标签位置

    package main import ( "fmt" "time" ) func main() { STUDYHARD: fmt.Println(" ...

  2. CVPR2020无人驾驶论文摘要

    CVPR2020无人驾驶论文摘要 无人 导读/ Starsky是一种比较独特的方案.它是在高速上自动驾驶,第一公里最后一公里采用远程驾驶的模式,Starsky的卡车可以由人类远程操作.没有使用较为昂贵 ...

  3. GPU编程和流式多处理器(六)

    GPU编程和流式多处理器(六) 5. 纹理和表面 读取和写入纹理和表面的指令,所引用的隐式状态,比其他指令要多得多.header中包含诸如基地址,尺寸,格式和纹理内容的解释之类的参数,该header是 ...

  4. Gbps接口面向汽车应用

    Gbps接口面向汽车应用 Gbps interfaces target automotive appications 巴黎--不久前,移动通信行业是一个领着芯片商的领头羊,命令坐着,脚跟着,然后翻身. ...

  5. MEMS传感器作为变革的驱动力

    MEMS sensors as drivers for change 物联网(IoT)正在改变与周围世界互动的方式.每个人,每件事,都是相互联系的,很快就会相互联系.微机电系统(MEMS)设备和传感器 ...

  6. python_request 使用jsonpath取值结果,进行接口关联

    一.jsonpath的安装 pip   install  jsonpath 二.使用举例 import jsonpath d1={"token":"hjshdsjhdsj ...

  7. Centos Yum 安装 Mysql 5.7

    Centos 6 / 7 官方源安装Mysql 5.7 1 检查当前系统是否有旧版本 # rpm -qa | grep mysqlmysql-libs-5.1.71-1.el6.x86_64 #  r ...

  8. 6.17考试总结(NOIP模拟8)[星际旅行·砍树·超级树·求和]

    6.17考试总结(NOIP模拟8) 背景 考得不咋样,有一个非常遗憾的地方:最后一题少取膜了,\(100pts->40pts\),改了这么多年的错还是头一回看见以下的情景... T1星际旅行 前 ...

  9. noip2015 总结

    神奇的幻方 题目描述 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,--,N构成,且每行.每列及两条对角线上的数字之和都相同. 当N为奇数时,我们可以通过以下方法构建一个幻方:首先将1写在第一行的 ...

  10. 小白学k8s(9)-gitlab-runner实现go项目的自动化发布

    gitlab构建CI/CD 准备 docker部署gitlab 使用二进制部署gitlab-runner gitlab-runner注册 配置Variables 简单先来个测试 开始构建 遇到的报错 ...