RPC 框架有很多可扩展的地方,如:序列化类型、压缩类型、负载均衡类型、注册中心类型等等。

假设框架提供的注册中心只有zookeeper,但是使用者想用Eureka,修改框架以支持使用者的需求显然不是好的做法。

最好的做法就是留下扩展点,让使用者可以不需要修改框架,就能自己去实现扩展。

JDK 原生已经为我们提供了 SPI 机制,ccx-rpc 在此基础上,进行了性能优化和功能增强。

在讲解 ccx-rpc 的增强 SPI 之前,先来了解一下 JDK SPI 吧。

讲解的 RPC 框架叫 ccx-rpc,代码已经开源。

Github:https://github.com/chenchuxin/ccx-rpc

Gitee:https://gitee.com/imccx/ccx-rpc

JDK SPI

下面我们来看一下 JDK SPI 是如何使用的。

我们先来定义一个序列化接口和 JSONProtostuff 两种实现:

public interface Serializer {
byte[] serialize(Object object);
}
public class JSONSerializer implements Serializer {
@Override
public byte[] serialize(Object object) {
return JSONUtil.toJsonStr(object).getBytes();
}
} public class ProtostuffSerializer implements Serializer {
private static final LinkedBuffer BUFFER = LinkedBuffer.allocate(LinkedBuffer.DEFAULT_BUFFER_SIZE);
@Override
public byte[] serialize(Object object) {
Schema schema = RuntimeSchema.getSchema(object.getClass());
return ProtostuffIOUtil.toByteArray(object, schema, BUFFER);
}
}

resources/META-INF/services 目录下添加一个 com.xxx.Serializer 的文件,这是 JDK SPI 的配置文件:

com.xxx.JSONSerializer
com.xxx.ProtostuffSerializer

如何使用 SPI 将实现类加载出来呢?

public static void main(String[] args) {
ServiceLoader<Serializer> serviceLoader = ServiceLoader.load(Serializer.class);
Iterator<Serializer> iterator = serviceLoader.iterator();
while (iterator.hasNext()) {
Serializer serializer= iterator.next();
System.out.println(serializer.getClass().getName());
}
}

输出如下:

com.xxx.JSONSerializer
com.xxx.ProtostuffSerializer

通过上面的例子,我们可以了解到 SPI 的简单用法。接下来,我们就来看增强版的 SPI 是如何实现的,又增强在哪里。

增强版 SPI

我们先来看看增强版 SPI 是如何使用的吧,还是拿序列化来举例。

  1. 定义接口,接口加上 @SPI 注解
@SPI
public interface Serializer {
byte[] serialize(Object object);
}
  1. 实现类,这个代码跟上面的一模一样,就不重复贴代码了
  2. 配置文件
json=com.ccx.rpc.demo.client.spi.JSONSerializer
protostuff=com.ccx.rpc.demo.client.spi.ProtostuffSerializer
  1. 获取扩展类

    我们可以只实例化想要的实现类
public static void main(String[] args) {
ExtensionLoader<Serializer> loader = ExtensionLoader.getLoader(Serializer.class);
Serializer serializer = loader.getExtension("protostuff");
System.out.println(serializer.getClass().getName());
}

上面是增强版 SPI 的基础用法,还是相当简单的。下面我们就要开始讲解代码实现了,准备好,要发车了。

增强版 SPI 的逻辑位于 ccx-rpc-commoncom.ccx.rpc.common.extension.ExtensionLoader 中。

以下贴的代码,为了突出重点,会进行删减,想看完整版,请到 github 或者 gitee看。

懒惰加载

JDK SPI 在查找实现类的时候,需要遍历配置文件中定义的所有实现类,而这个过程会把所有实现类都实例化。一个接口如果有很多实现类,而我们只需要其中一个的时候,就会产生其他不必要的实现类。 例如 Dubbo 的序列化接口,实现类就有 fastjsongsonhession2jdkkryoprotobuf 等等,通常我们只需要选择一种序列化方式。如果用 JDK SPI,那其他没用的序列化实现类都会实例化,实例化所有实现类明显是资源浪费!

ccx-rpc 的扩展加载器就对此进行了优化,只会对需要实例化的实现类进行实例化,也就是俗称的"懒惰加载"。

获取扩展类实例的实现如下:

public T getExtension(String name) {
T extension = extensionsCache.get(name);
if (extension == null) {
synchronized (lock) {
extension = extensionsCache.get(name);
if (extension == null) {
extension = createExtension(name);
extensionsCache.put(name, extension);
}
}
}
return extension;
}

这是一个典型的 double-check 懒汉单例实现,当程序需要某个实现类的时候,才会去真正初始化它。

配置文件

配置文件采用的格式参考 dubbo,示例:

json=com.ccx.rpc.demo.client.spi.JSONSerializer
protostuff=com.ccx.rpc.demo.client.spi.ProtostuffSerializer

采用 key-value 的配置格式有个好处就是,要获取某个类型的扩展,可以直接使用名字来获取,可以大大提高可读性。

加载解析配置文件的代码也比较简单:

/**
* 从资源文件中加载所有扩展类
*/
private Map<String, Class<?>> loadClassesFromResources() {
// ... 省略非关键代码
Enumeration<URL> resources = classLoader.getResources(fileName);
while (resources.hasMoreElements()) {
URL url = resources.nextElement();
try (BufferedReader reader = new BufferedReader(url...) {
// 开始读文件
while (true) {
String line = reader.readLine();
parseLine(line, extensionClasses);
}
}
}
} /**
* 解析行,并且把解析到的类,放到 extensionClasses 中
*/
private void parseLine(String line, Map<String, Class<?>> extensionClasses) {
// 用等号将行分割开,kv[0]就是名字,kv[1]就是类名
String[] kv = line.split("=");
Class<?> clazz = ExtensionLoader.class.getClassLoader().loadClass(kv[1]);
extensionClasses.put(kv[0], clazz);
}

扩展类的创建

当获取扩展类不存在时,会加锁实例化扩展类。实例化的流程如下:

  1. 从配置文件中,加载该接口所有的实现类的 Class 对象,并放到缓存中。
  2. 根据要获取的扩展名字,找到对应的 Class 对象。
  3. 调用 clazz.newInstance() 实例化。(Class 需要有无参构造函数)

目前实例化的方式是最简单的方式,当然后面如果需要,也可以再扩展成可以注入的。

代码在自己手上,扩展就相对于 JDK SPI 容易很多。

private T createExtension(String name) {
// 获取当前类型所有扩展类
Map<String, Class<?>> extensionClasses = getAllExtensionClasses();
// 再根据名字找到对应的扩展类
Class<?> clazz = extensionClasses.get(name);
return (T) clazz.newInstance();
}

加载器缓存

加载器指的就是 ExtensionLoader<T>,为了减少对象的开销,ccx-rpc 屏蔽了加载器的构造函数,提供了一个静态方法来获取加载器。

/**
* 扩展加载器实例缓存 {类型:加载器实例}
*/
private static final Map<Class<?>, ExtensionLoader<?>> extensionLoaderCache = new ConcurrentHashMap<>(); public static <S> ExtensionLoader<S> getLoader(Class<S> type) {
// ... 忽略部分代码
SPI annotation = type.getAnnotation(SPI.class);
ExtensionLoader<?> extensionLoader = extensionLoaderCache.get(type);
if (extensionLoader != null) {
return (ExtensionLoader<S>) extensionLoader;
}
extensionLoader = new ExtensionLoader<>(type);
extensionLoaderCache.putIfAbsent(type, extensionLoader);
return (ExtensionLoader<S>) extensionLoader;
}

extensionLoaderCache 是一个 Map,缓存了各种类型的加载器。获取的时候先从缓存获取,缓存不存在则去实例化,然后放到缓存中。这是一个很常见的缓存技巧。

默认扩展

ccx-rpc 还提供了默认扩展的功能,接口在使用 @SPI 的时候可以指定一个默认的实现类名,例如 @SPI("netty")

这样当获取扩展名留空没有配置的时候,就会直接获取默认扩展,减少了配置的量。

在获取扩展类的时候,会从 @SPI 中获取 value(),把默认扩展名缓存起来。

private static String defaultNameCache;

public static <S> ExtensionLoader<S> getLoader(Class<S> type) {
// ... 省略
SPI annotation = type.getAnnotation(SPI.class);
defaultNameCache = annotation.value();
// ... 省略
}

获取默认扩展的代码就很简单了,直接使用了 defaultNameCache 去获取扩展。

public T getDefaultExtension() {
return getExtension(defaultNameCache);
}

适配扩展

获取扩展类的时候,需要输入扩展名,这样就需要先从配置里面读到响应的扩展名,才能根据扩展名获取扩展类。这个过程稍显麻烦,ccx-rpc 还提供了一种适配扩展,可以动态从 URL 中读取对应的配置并自动获取扩展类。

下面我们来看一下用法:

@SPI
public interface RegistryFactory { /**
* 获取注册中心
*
* @param url 注册中心的配置,例如注册中心的地址。会自动根据协议获取注册中心实例
* @return 如果协议类型跟注册中心匹配上了,返回对应的配置中心实例
*/
@Adaptive("protocol")
Registry getRegistry(URL url);
}
public static void main(String[] args) {
// 获取适配扩展
RegistryFactory zkRegistryFactory = ExtensionLoader.getLoader(RegistryFactory.class).getAdaptiveExtension();
URL url = URLParser.toURL("zk://localhost:2181");
// 适配扩展自动从 ur 中解析出扩展名,然后返回对应的扩展类
Registry registry = zkRegistryFactory.getRegistry(url);
}

从实例代码,可以看到,有一个@Adaptive("protocol") 注解,方法中有 URL 参数。其逻辑就是,SPI 从传进来的 URL 的协议中字段中,获取到扩展名 zk

下面我们来看看获取适配扩展的代码是怎么实现的吧。

public T getAdaptiveExtension() {
InvocationHandler handler = new AdaptiveInvocationHandler<T>(type);
return (T) Proxy.newProxyInstance(ExtensionLoader.class.getClassLoader(),
new Class<?>[]{type}, handler);
}

适配扩展类其实是一个代理类,接下来来看看这个代理类 AdaptiveInvocationHandler

public class AdaptiveInvocationHandler<T> implements InvocationHandler {

    private final Class<T> clazz;

    public AdaptiveInvocationHandler(Class<T> tClass) {
clazz = tClass;
} @Override
public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
if (args.length == 0) {
return method.invoke(proxy, args);
}
// 找 URL 参数
URL url = null;
for (Object arg : args) {
if (arg instanceof URL) {
url = (URL) arg;
break;
}
}
// 找不到 URL 参数,直接执行方法
if (url == null) {
return method.invoke(proxy, args);
} Adaptive adaptive = method.getAnnotation(Adaptive.class);
// 如果不包含 @Adaptive,直接执行方法即可
if (adaptive == null) {
return method.invoke(proxy, args);
} // 从 @Adaptive#value() 中拿到扩展名的 key
String extendNameKey = adaptive.value();
String extendName;
// 如果这个 key 是协议,从协议拿。其他的就直接从 URL 参数拿
if (URLKeyConst.PROTOCOL.equals(extendNameKey)) {
extendName = url.getProtocol();
} else {
extendName = url.getParam(extendNameKey, method.getDeclaringClass() + "." + method.getName());
}
// 拿到扩展名之后,就直接从 ExtensionLoader 拿就行了
ExtensionLoader<T> extensionLoader = ExtensionLoader.getLoader(clazz);
T extension = extensionLoader.getExtension(extendName);
return method.invoke(extension, args);
}
}

从配置中获取扩展的代码注释都有,我们在梳理一下流程:

  1. 从方法参数中拿到 URL 参数,拿不到就直接执行方法
  2. 获取配置 Key。从 @Adaptive#value() 拿扩展名的配置 key,如果拿不到就直接执行方法
  3. 获取扩展名。判断配置 key 是不是协议,如果是就拿协议类型,否则拿 URL 后面的参数。

    例如 URL 是:zk://localhost:2181?type=eureka

    • 如果 @Adaptive("protocol"),那么扩展名就是协议类型:zk
    • 如果 @Adaptive("type"),那么扩展名就是type 参数:eureka
  4. 最后根据扩展名获取扩展 extensionLoader.getExtension(extendName)

总结

RPC 框架扩展很重要,SPI 是一个很好的机制。

JDK SPI 获取扩展的时候,会实例化所有的扩展,造成资源的浪费。

ccx-rpc 自己实现了一套增强版的 SPI,有如下特点:

  • 懒惰加载
  • key-value 结构的配置文件
  • 加载器缓存
  • 默认扩展
  • 适配扩展

ccx-rpcSPI 机制参考 Dubbo SPI,在它的基础上进行了精简和修改,在此对 Dubbo 表示感谢。

从零开始实现简单 RPC 框架 2:扩展利器 SPI的更多相关文章

  1. 从零开始实现简单 RPC 框架 5:网络通信之序列化

    我们在接下来会开始讲网络通信相关的内容了.既然是网络通信,那必然会涉及到序列化的相关技术. 下面是 ccx-rpc 序列化器的接口定义. /** * 序列化器 */ public interface ...

  2. 从零开始实现简单 RPC 框架 6:网络通信之 Netty

    网络通信的开发,就涉及到一些开发框架:Java NIO.Netty.Mina 等等. 理论上来说,类似于序列化器,可以为其定义一套统一的接口,让不同类型的框架实现,事实上,Dubbo 就是这么干的. ...

  3. 从零开始实现简单 RPC 框架 7:网络通信之自定义协议(粘包拆包、编解码)

    当 RPC 框架使用 Netty 通信时,实际上是将数据转化成 ByteBuf 的方式进行传输. 那如何转化呢?可不可以把 请求参数 或者 响应结果 直接无脑序列化成 byte 数组发出去? 答:直接 ...

  4. 从零开始实现简单 RPC 框架 4:注册中心

    RPC 中服务消费端(Consumer) 需要请求服务提供方(Provider)的接口,必须要知道 Provider 的地址才能请求到. 那么,Consumer 要从哪里获取 Provider 的地址 ...

  5. 从零开始实现简单 RPC 框架 3:配置总线 URL

    URL 的定义 URL 对于大部分程序猿来说都是很熟悉的,其全称是 Uniform Resource Locator (统一资源定位器).它是互联网的统一资源定位标志,也就是指网络地址. 一个标准的 ...

  6. 从零开始实现简单 RPC 框架 9:网络通信之心跳与重连机制

    一.心跳 什么是心跳 在 TPC 中,客户端和服务端建立连接之后,需要定期发送数据包,来通知对方自己还在线,以确保 TPC 连接的有效性.如果一个连接长时间没有心跳,需要及时断开,否则服务端会维护很多 ...

  7. 从零开始实现简单 RPC 框架 8:网络通信之 Request-Response 模型

    Netty 在服务端与客户端的网络通信中,使用的是异步双向通信(双工)的方式,即客户端和服务端可以相互主动发请求给对方,发消息后不会同步等响应.这样就会有一下问题: 如何识别消息是请求还是响应? 请求 ...

  8. RPC笔记之初探RPC:DIY简单RPC框架

    一.什么是RPC RPC(Remote Procedure Call)即远程过程调用,简单的说就是在A机器上去调用B机器上的某个方法,在分布式系统中极其常用. rpc原理其实很简单,比较容易理解,在r ...

  9. Java实现简单RPC框架(转)

    一.RPC简介 RPC,全称Remote Procedure Call, 即远程过程调用,它是一个计算机通信协议.它允许像本地服务一样调用远程服务.它可以有不同的实现方式.如RMI(远程方法调用).H ...

随机推荐

  1. 关于PHP导出数据超时的优化

    一般情况下,导出超时可能都是以下三种情况: 一.sql语句复杂,查询时间过长: 二.处理查询后数据逻辑冗余: 三.数据量过大导致响应超时. 接下来分别给出这三种情况的优化建议. 一.sql语句复杂,查 ...

  2. POJ 1016 Numbers That Count 不难,但要注意细节

    题意是将一串数字转换成另一种形式.比如5553141转换成2个1,1个3,1个4,3个5,即21131435.1000000000000转换成12011.数字的个数是可能超过9个的.n个m,m是从小到 ...

  3. Error in render: "TypeError: Cannot read property '' of undefined"

    描述 在用Vue的时候出现了一个令人窒息的错误 报错显示 "avatar" 未定义,但在postman中测试返回的数据确实有"avatar",可是为什么未找到? ...

  4. 【网络编程】HTTP简介&URL

    目录 前言 1. http 简介 1.1 概念 1.2 原理 1.3 特点 2. URL 简介 2.1 概念 2.2 URL 通用格式 2.3 网页地址 实例说明 3. HTTP 消息结构 3.1 客 ...

  5. java 的 IO简单理解

    首先要先理解什么是 stream ? stream代表的是任何有能力产出数据的数据源,或是任何有能力接收数据的接收源. 一.不同导向的 stream 1)以字节为单位从 stream 中读取或往 st ...

  6. python 06篇 常用模块

    一.模块 什么是模块? 模块实质上就是一个python文件,它是用来组织代码的,意思就是说把python代码写到里面,文件名就是模块的名称,test.py test就是模块名称. 1.1 导入模块 i ...

  7. python adb 关闭拼多多

    def gbpdd(sjh): aaka="adb -s {0} shell am force-stop com.xunmeng.pinduoduo".format(sjh) aa ...

  8. 记录Jackson和Lombok的坑

    记录Jackson和Lombok的坑 今天遇到Jackson反序列化json缺少了字段,后来研究下发现是Jackson的机制和Lombok生成的setter不一致,导致没有正确调用setter. 复现 ...

  9. 解决clipboard.js在移动端复制失败的问题

    1.前沿 在项目中使用clipboard.js插件去实现点击按钮,复制一段网址到剪切板的功能.功能做好后,一开始无论这pc端还是移动端都能正常使用.突然某一天测出了一个bug:移动端复制失败,pc端是 ...

  10. selenium3 + python - js&jquery操作处理

    # 推荐学习:https://www.w3school.com.cn/js/index.asp## 下面以简书登录&注册定位元素为例"""js定位 id name ...