【C# 并发编程】开端
1,异步编程
异步编程就是使用future模式(又称promise)或者回调机制来实现(Non-blocking on waiting)。
如果使用回调或事件来实现(容易callback hell),不仅编写这样的代码不直观,很快就容易把代码搞得一团糟。不过在.NET 4.5(C# 5)中引入的async/await关键字(在.NET 4.0中通过添加Microsoft.Bcl.Async包也可以使用),让编写异步代码变得容易和优雅。通过使用async/await关键字,可以像写同步代码那样编写异步代码,所有的回调和事件处理都交给编译器和运行时帮你处理了。
使用异步编程有两个好处:不阻塞主线程(比如UI线程),提高服务端应用的吞吐量。所以微软推荐ASP.NET中默认使用异步来处理请求。
要详细了解异步编程,可以参考官方文档:
https://msdn.microsoft.com/en-us/library/jj152938(v=vs.110).aspx
和《Async in C#
5.0》这本书。另外,在这个官方文档中,微软还特意把异步编程分作了3种不同的模型:基于任务的模式(TAP)就是我上面推荐的这种,基于事件的模式(EAP)和异步编程模型(APM)我上面不推荐的事件和回调。
2,并行编程
并行编程的出现实际上是随着CPU有多核而兴起的,目的是充分利用多核CPU的计算能力。并行编程由于会提高CPU的利用率,更适合客户端的一些应用,对于服务端的应用可能会造成负面影响(因为服务器本身就具有并行处理的特点,比如IIS会并行的处理多个请求)。我自己使用并行编程最多的场景是之前分析环境数据不确定度的时候,使用并行的方式计算蒙特卡洛模拟(计算上千次之后拟合),当然后来我使用泰勒级数展开来计算不确定度,没有这么多的计算量就无需并行了。当然在计算多方案结果比较的情况下,还是继续使用了并发计算。
在.NET中,并行的支持主要靠.NET
4.0引入的任务并行库和并行LINQ。通过这些库可以实现数据并行处理(处理方式相同,输入数据不同,比如我上面提到的应用场景)或者任务并行处理(处理方式不同,且数据隔离)。通过使用并行处理库,你不用关心Task的创建和管理(当然更不用说底层的线程了),只需要关注处理任务本身就行了。
具体的用法还是参考官方文档:
https://msdn.microsoft.com/en-us/library/dd460693(v=vs.110).aspx,当然《Parallel Programming with Microsoft .NET》这本书也行。
3,响应式编程
响应式编程最近成为了一个Buzzword,其实微软6年前就开始给.NET提供一个Reactive, C#响应式远远把java甩在身后。
Extensions了。一开始要理解响应式编程有点困难,但是一旦理解了,你就会对它的强大功能爱不释手。简单来说,响应式编程把事件流看作数据流,不过数据流是从IEnumable中拉取的,而数据流是从IObservable推送给你的。为什么响应式编程可以实现并发呢?这是因为Rx做到线程不可知,每次事件触发,后续的处理会从线程池中任意取出一个线程来处理。且可以对事件设置窗口期和限流。举个例子,你可以用Rx来让搜索文本框进行延迟处理(而不用类似我很早的时候用个定时器来延迟了)。
要详细了解Rx最好的方式就是浏览 IntroToRx.com 这个网站,当然还有官方文档:
https://msdn.microsoft.com/en-us/data/gg577609
4,数据流编程
数据流(DataFlow)编程可能大家就更陌生了,不过还是有些常用场景可以使用数据流来解决。数据流其实是在任务并行库(TPL)上衍生出来的一套处理数据的扩展(也结合了异步的特性),TPL也是处理并行编程中任务并行和数据并行的基础库。
望文生义,TPL
DataFlow就是对数据进行一连串处理,首先为这样的处理定义一套网格(mesh),网格中可以定义分叉(fork)、连接(join)、循环(loop)。数据流入这样的处理网格就能够并行的被处理。你可以认为网格是一种升级版的管道,实际上很多时候就是被当作管道来使用。使用场景可以是“分析文本文件中词频”,也可以是“处理生产者/消费者问题”。
参考资料当然也是官方文档:
https://msdn.microsoft.com/en-us/library/hh228603(v=vs.110).aspx
5,Actor模型
Scala有Akka,其实微软研究院也推出了Orleans来支持了Actor模型的实现,当然也有Akka.NET可用。Orleans设计的目标是为了方便程序员开发需要大规模扩展的云服务,
可用于实现DDD+EventSourcing/CQRS系统。
官方网站是:
http://dotnet.github.io/orleans/,善友也有介绍:
http://www.cnblogs.com/shanyou/p/4295523.html
那么,我为什么喜欢使用C#来做并发编程呢?显而易见,有上面这些唾手可得的工具,使用C#同样可以轻易开发并发程序。
【C# 并发编程】开端的更多相关文章
- [ 高并发]Java高并发编程系列第二篇--线程同步
高并发,听起来高大上的一个词汇,在身处于互联网潮的社会大趋势下,高并发赋予了更多的传奇色彩.首先,我们可以看到很多招聘中,会提到有高并发项目者优先.高并发,意味着,你的前雇主,有很大的业务层面的需求, ...
- 伪共享(false sharing),并发编程无声的性能杀手
在并发编程过程中,我们大部分的焦点都放在如何控制共享变量的访问控制上(代码层面),但是很少人会关注系统硬件及 JVM 底层相关的影响因素.前段时间学习了一个牛X的高性能异步处理框架 Disruptor ...
- 【Java并发编程实战】----- AQS(四):CLH同步队列
在[Java并发编程实战]-–"J.U.C":CLH队列锁提过,AQS里面的CLH队列是CLH同步锁的一种变形.其主要从两方面进行了改造:节点的结构与节点等待机制.在结构上引入了头 ...
- 【Java并发编程实战】----- AQS(三):阻塞、唤醒:LockSupport
在上篇博客([Java并发编程实战]----- AQS(二):获取锁.释放锁)中提到,当一个线程加入到CLH队列中时,如果不是头节点是需要判断该节点是否需要挂起:在释放锁后,需要唤醒该线程的继任节点 ...
- 【Java并发编程实战】----- AQS(二):获取锁、释放锁
上篇博客稍微介绍了一下AQS,下面我们来关注下AQS的所获取和锁释放. AQS锁获取 AQS包含如下几个方法: acquire(int arg):以独占模式获取对象,忽略中断. acquireInte ...
- 【Java并发编程实战】-----“J.U.C”:CLH队列锁
在前面介绍的几篇博客中总是提到CLH队列,在AQS中CLH队列是维护一组线程的严格按照FIFO的队列.他能够确保无饥饿,严格的先来先服务的公平性.下图是CLH队列节点的示意图: 在CLH队列的节点QN ...
- 【Java并发编程实战】-----“J.U.C”:Exchanger
前面介绍了三个同步辅助类:CyclicBarrier.Barrier.Phaser,这篇博客介绍最后一个:Exchanger.JDK API是这样介绍的:可以在对中对元素进行配对和交换的线程的同步点. ...
- 【Java并发编程实战】-----“J.U.C”:CountDownlatch
上篇博文([Java并发编程实战]-----"J.U.C":CyclicBarrier)LZ介绍了CyclicBarrier.CyclicBarrier所描述的是"允许一 ...
- 【Java并发编程实战】-----“J.U.C”:CyclicBarrier
在上篇博客([Java并发编程实战]-----"J.U.C":Semaphore)中,LZ介绍了Semaphore,下面LZ介绍CyclicBarrier.在JDK API中是这么 ...
随机推荐
- spring拦截机制中Filter(过滤器)、interceptor(拦截器)和Aspect(切面)的使用及区别
Spring中的拦截机制,如果出现异常的话,异常的顺序是从里面到外面一步一步的进行处理,如果到了最外层都没有进行处理的话,就会由tomcat容器抛出异常. 1.过滤器:Filter :可以获得Http ...
- K8s QoS Pod资源服务质量控制
Kubernetes 中如果一个 Node 节点上的 Pod 占用资源过多并且不断飙升导致 Node 节点资源不足,可能会导致为了保证节点可用,将容器被杀掉.在遇见这种情况时候,我们希望先杀掉那些不太 ...
- 字节跳动Web Infra发起 Modern.js 开源项目,打造现代 Web 工程体系
10 月 27 日举办的稀土开发者大会上,字节跳动 Web Infra 正式发起 Modern.js 开源项目,希望推动现代 Web 开发范式的普及,发展完整的现代 Web 工程体系,突破应用开发效率 ...
- SpringBoot使用异步线程池实现生产环境批量数据推送
前言 SpringBoot使用异步线程池: 1.编写线程池配置类,自定义一个线程池: 2.定义一个异步服务: 3.使用@Async注解指向定义的线程池: 这里以我工作中使用过的一个案例来做描述,我所在 ...
- Discriminative Learning of Deep Convolutional Feature Point Descriptors 论文阅读笔记
介绍 该文提出一种基于深度学习的特征描述方法,并且对尺度变化.图像旋转.透射变换.非刚性变形.光照变化等具有很好的鲁棒性.该算法的整体思想并不复杂,使用孪生网络从图块中提取特征信息(得到一个128维的 ...
- pycharm中操作git
pycharm操作git 1.找到VCS 2.
- 如何使用 pytorch 实现 SSD 目标检测算法
前言 SSD 的全称是 Single Shot MultiBox Detector,它和 YOLO 一样,是 One-Stage 目标检测算法中的一种.由于是单阶段的算法,不需要产生所谓的候选区域,所 ...
- Redis设计与实现
简述Redis设计与实现 Redis是一个高性能的key-value的非关系型数据库,Redis是运行在内存中的一种数据库,但是它也可以持久化到磁盘中,Redis的实现有着更为复杂的数据结构并且提供对 ...
- bom案例4-模拟滚动条
<!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...
- 关于 BSGS 以及 ExBSGS 算法的理解
BSGS 引入 求解关于\(X\)的方程, \[A^X\equiv B \pmod P \] 其中\(Gcd(A,P)=1\) 求解 我们令\(X=i*\sqrt{P}-j\),其中\(0<=i ...