【LeetCode】198. House Robber 打家劫舍 解题报告(Java & Python)
作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/
[LeetCode]
题目地址:https://leetcode.com/problems/house-robber/
Total Accepted: 67398 Total Submissions: 196356 Difficulty: Easy
题目描述
You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.
Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.
Example 1:
Input: [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
Total amount you can rob = 1 + 3 = 4.
Example 2:
Input: [2,7,9,3,1]
Output: 12
Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).
Total amount you can rob = 2 + 9 + 1 = 12.
题目大意
每个房间里有些价值的物品,不能偷连续的房间,那么求最多能偷多少物品?
解题方法
动态规划到底怎么想?其实可以先用 递归+记忆化
解决问题,然后再转化成动态规划。
首先说明的是 递归+记忆化 是从顶向下的一种解决方式:即我们要解决大问题,大问题拆解成小问题。
而 动态规划 是从底向上的一种解决方式:即我们先解决小问题,然后逐步推出大问题。
递归
假如dfs(i)
表示从左到右的第 i
个位置能偷多少金额,是不是就是 max(dfs(i - 1), dfs(i - 2) + nums[i])
。自顶向下的思路就是递归去求解 dfs(i - 1)
, dfs(i - 2)
。
所以我们有了最简单的一个递归代码:
class Solution(object):
def rob(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if not nums:
return 0
return self.dfs(nums, len(nums) - 1)
# 在第 i 个房间之前(包括 i)能获取的最大收益
def dfs(self, nums, i):
if i == 0:
return nums[0]
if i == 1:
return max(nums[0], nums[1])
return max(self.dfs(nums, i - 1), self.dfs(nums, i - 2) + nums[i])
提交之后发现超时了。
递归 + 记忆化
为什么超时呢,是因为我们有重复计算:dfs(2)
需要求 dfs(0)
、dfs(1)
;而 dfs(3)
需要求 dfs(2)
,然后再求一遍 dfs(0)
、dfs(1)
。
解决这个问题的方法是:记录一下已经求过的值,避免重复计算。
于是有了记忆化的方法,用memo[i]
记录已经求过的dfs(i)
,之后在搜索的时候,先找 memo
中是否已经保存了这个数字,如果已经保存就不用再计算了。
于是有了以下的代码:
class Solution(object):
def rob(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if not nums:
return 0
self.memo = dict()
return self.dfs(nums, len(nums) - 1)
# 在第 i 个房间之前(包括 i)能获取的最大收益
def dfs(self, nums, i):
if i in self.memo:
return self.memo[i]
res = 0
if i == 0:
res = nums[0]
elif i == 1:
res = max(nums[0], nums[1])
else:
res = max(self.dfs(nums, i - 1), self.dfs(nums, i - 2) + nums[i])
self.memo[i] = res
return res
这份答案已经能通过了。
动态规划
上面分析了这么多,可以看出递归是先想获得 i
位置的结果 ,然后分解成求解 i - 1
位置的结果 和 i - 2
位置的结果。这就是从顶向下
。
反过来我们也可以想到,如果先求 i - 1
位置的结果 和 i - 2
位置的结果,再求 i
位置的结果不是也行吗?对!这就是 动态规划,它的思想是从底向上
。
首先定义状态: dp[i] 表示从左到右的第 i
个位置能偷多少金额。(和递归的定义是不是一样?)
然后明确状态转移方程:
dp[0] = num[0] (当i=0时)
dp[1] = max(num[0], num[1]) (当i=1时)
dp[i] = max(num[i] + dp[i - 2], dp[i - 1]) (当 i !=0 and i != 1 时)
最后写代码:
class Solution(object):
def rob(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if not nums:
return 0
N = len(nums)
dp = [0] * (N + 1)
dp[1] = nums[0]
for i in range(1, N):
dp[i + 1] = max(dp[i], dp[i - 1] + nums[i])
return dp[-1]
动态规划会比递归 + 记忆化
的速度更快,主要是递归 + 记忆化
需要开辟栈空间,而且还需要多一步是否在 memo
中存在的判断。
Java代码如下:
public class Solution {
public int rob(int[] nums) {
if(nums.length==0) return 0;
if(nums.length==1) return nums[0];
int[] maxMoney=new int[nums.length];
maxMoney[0]=nums[0];
maxMoney[1]=Math.max(nums[0],nums[1]);
for(int i=2; i<nums.length; i++){
maxMoney[i]=Math.max(nums[i]+maxMoney[i-2], maxMoney[i-1]);
}
return maxMoney[nums.length-1];
}
}
AC:0ms
优化动态规划空间
我们看到动态规划的解法中,dp[i]
只和 dp[i - 1]
和 dp[ i - 2]
有关,因此可以用变量优化使用空间:
Python代码如下:
class Solution:
def rob(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
prev, cur = 0, 0
for value in nums:
prev, cur = cur, max(prev + value, cur)
return cur
日期
2016/5/1 21:44:42
2018 年 9 月 9 日
2018 年 11 月 21 日 —— 又是一个美好的开始
2020 年 5 月 29 日 —— 答辩顺利
【LeetCode】198. House Robber 打家劫舍 解题报告(Java & Python)的更多相关文章
- 【LeetCode】383. Ransom Note 解题报告(Java & Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 Java解法 Python解法 日期 [LeetCo ...
- 【LeetCode】575. Distribute Candies 解题报告(Java & Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 Java解法 Python解法 日期 题目地址:ht ...
- 【LeetCode】136. Single Number 解题报告(Java & Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 异或 字典 日期 [LeetCode] 题目地址:h ...
- 【LeetCode】283. Move Zeroes 解题报告(Java & Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 方法一:首尾指针 方法二:头部双指针+双循环 方法三 ...
- 【LeetCode】386. Lexicographical Numbers 解题报告(Python)
[LeetCode]386. Lexicographical Numbers 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博 ...
- 【LeetCode】376. Wiggle Subsequence 解题报告(Python)
[LeetCode]376. Wiggle Subsequence 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.c ...
- 【LeetCode】649. Dota2 Senate 解题报告(Python)
[LeetCode]649. Dota2 Senate 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地 ...
- 【LeetCode】911. Online Election 解题报告(Python)
[LeetCode]911. Online Election 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ ...
- 【LeetCode】886. Possible Bipartition 解题报告(Python)
[LeetCode]886. Possible Bipartition 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu ...
随机推荐
- Mybatis批量添加、更新小结
虽然是很基础的东西,不过难免会忘记,所以写个笔记巩固一下,顺便分享. 实体类: @Data public class EventOrder { private Long id; private ...
- Prometheus概述
Prometheus是什么 首先, Prometheus 是一款时序(time series) 数据库, 但他的功能却并非支部与 TSDB , 而是一款设计用于进行目标 (Target) 监控的关键组 ...
- hbase参数调优
@ 目录 HBase参数调优 hbase.regionserver.handler.count hbase.hregion.max.filesize hbase.hregion.majorcompac ...
- linux 实用指令文件目录类
目录 linux实用指令文件目录类 路径 pwd指令 cd指令 操作文件夹/文件 ls指令 mkdir rmdir touch cp(重要) rm mv 操作内容 cat more less > ...
- Java项目发现==顺手改成equals之后,会发生什么?
最近发生一件很尴尬的事情,在维护一个 Java 项目的时候,发现有使用 == 来比较两个对象的属性, 于是顺手就把 == 改成了 equals.悲剧发生...... == 和 equals 的区别 = ...
- 报错:Unsupported field: HourOfDay
报错:Unsupported field: HourOfDay 这个错误就比较搞笑也比较低级了. 代码如下 LocalDate now = LocalDate.now(); String year = ...
- mysql触发器实例说明
触发器是一类特殊的事务 ,可以监视某种数据操作(insert/update/delete),并触发相关操作(insert/update/delete). 看以下事件: 完成下单与减少库存的逻辑 Ins ...
- zabbix之二进制安装
#:参考官方网站 https://www.zabbix.com/documentation/4.0/manual/installation/install_from_packages/debian_u ...
- Linux后台启动服务
systemctl 启动/关闭/启用/禁用服务 总结 启动服务 systemctl start test.service 关闭服务 systemctl stop test.service 重启服务 s ...
- 删除数据库时报错 ERROR 1010 (HY000): Error dropping database (can't rmdir './cart', errno: 39)
这是因为在数据目录下有表相关的数据(不是表),此时应该进入存放表的目录下删除与表相关的数据,一般数据存放目录默认为/var/lib/mysql,cd到目录下 执行命令:cd /var/lib/mysq ...