1 模拟单机连接瓶颈

我们知道,通常启动一个服务端会绑定一个端口,例如8000端口,当然客户端连接端口是有限制的,除去最大端口65535和默认的1024端口及以下的端口,就只剩下1 024~65 535个,再扣除一些常用端口,实际可用端口只有6万个左右。那么,我们如何实现单机百万连接呢?

假设在服务端启动[8 000,8 100)这100个端口,100×6万就可以实现600万左右的连接,这是TCP的一个基础知识,虽然对于客户端来说是同一个端口号,但是对于服务端来说是不同的端口号,由于TCP是一个私源组概念,也就是说它是由源IP地址、源端口号、目的IP地址和目的端口号确定的,当源IP地址和源端口号是一样的,但是目的端口号不一样,那么最终系统底层会把它当作两条TCP连接来处理,所以这里取巧给服务端开启了100个端口号,这就是单机百万连接的准备工作,如下图所示。

单机1024及以下的端口只能给ROOT保留使用,客户端端口范围为1 025~65 535,接下来用代码实现单机百万连接的模拟场景。先看服务端类,循环开启[8 000~8 100)这100个监听端口,等待客户端连接。下面已Netty为例编写代码如下。


package com.tom.netty.connection; import io.netty.bootstrap.ServerBootstrap;
import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelFutureListener;
import io.netty.channel.ChannelOption;
import io.netty.channel.EventLoopGroup;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.nio.NioServerSocketChannel; /**
* @author Tom
*/
public final class Server {
public static final int BEGIN_PORT = 8000;
public static final int N_PORT = 8100; public static void main(String[] args) {
new Server().start(Server.BEGIN_PORT, Server.N_PORT);
} public void start(int beginPort, int nPort) {
System.out.println("服务端启动中..."); EventLoopGroup bossGroup = new NioEventLoopGroup();
EventLoopGroup workerGroup = new NioEventLoopGroup(); ServerBootstrap bootstrap = new ServerBootstrap();
bootstrap.group(bossGroup, workerGroup);
bootstrap.channel(NioServerSocketChannel.class);
bootstrap.childOption(ChannelOption.SO_REUSEADDR, true); bootstrap.childHandler(new ConnectionCountHandler()); for (int i = 0; i <= (nPort - beginPort); i++) {
final int port = beginPort + i; bootstrap.bind(port).addListener(new ChannelFutureListener() {
public void operationComplete(ChannelFuture channelFuture) throws Exception {
System.out.println("成功绑定监听端口: " + port);
}
});
}
System.out.println("服务端已启动!");
}
}

然后看ConnectionCountHandler类的实现逻辑,主要用来统计单位时间内的请求数,每接入一个连接则自增一个数字,每2s统计一次,代码如下。


package com.tom.netty.connection; import io.netty.channel.ChannelHandler;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelInboundHandlerAdapter; import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger; /**
* Created by Tom.
*/
@ChannelHandler.Sharable
public class ConnectionCountHandler extends ChannelInboundHandlerAdapter { private AtomicInteger nConnection = new AtomicInteger(); public ConnectionCountHandler() {
Executors.newSingleThreadScheduledExecutor().scheduleAtFixedRate(new Runnable() {
public void run() {
System.out.println("当前客户端连接数: " + nConnection.get());
}
},0, 2, TimeUnit.SECONDS); } @Override
public void channelActive(ChannelHandlerContext ctx) {
nConnection.incrementAndGet();
} @Override
public void channelInactive(ChannelHandlerContext ctx) {
nConnection.decrementAndGet();
} }

再看客户端类代码,主要功能是循环依次往服务端开启的100个端口发起请求,直到服务端无响应、线程挂起为止,代码如下。


package com.tom.netty.connection; import io.netty.bootstrap.Bootstrap;
import io.netty.channel.*;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioSocketChannel; /**
* Created by Tom.
*/
public class Client { private static final String SERVER_HOST = "127.0.0.1"; public static void main(String[] args) {
new Client().start(Server.BEGIN_PORT, Server.N_PORT);
} public void start(final int beginPort, int nPort) {
System.out.println("客户端已启动...");
EventLoopGroup eventLoopGroup = new NioEventLoopGroup();
final Bootstrap bootstrap = new Bootstrap();
bootstrap.group(eventLoopGroup);
bootstrap.channel(NioSocketChannel.class);
bootstrap.option(ChannelOption.SO_REUSEADDR, true);
bootstrap.handler(new ChannelInitializer<SocketChannel>() {
@Override
protected void initChannel(SocketChannel ch) {
}
}); int index = 0;
int port;
while (!Thread.interrupted()) { port = beginPort + index;
try {
ChannelFuture channelFuture = bootstrap.connect(SERVER_HOST, port);
channelFuture.addListener(new ChannelFutureListener() {
public void operationComplete(ChannelFuture future) throws Exception {
if (!future.isSuccess()) {
System.out.println("连接失败,程序关闭!");
System.exit(0);
}
}
});
channelFuture.get();
} catch (Exception e) {
} if (port == nPort) { index = 0; }else { index ++; }
}
}
}

最后,将服务端程序打包发布到Linux服务器上,同样将客户端程序打包发布到另一台Linux服务器上。接下来分别启动服务端和客户端程序。运行一段时间之后,会发现服务端监听的连接数定格在一个值不再变化,如下所示。


当前客户端连接数: 870
当前客户端连接数: 870
当前客户端连接数: 870
当前客户端连接数: 870
当前客户端连接数: 870
当前客户端连接数: 870
当前客户端连接数: 870
当前客户端连接数: 870
当前客户端连接数: 870
...

并且抛出如下异常。


Exception in thread "nioEventLoopGroup-2-1" java.lang.InternalError: java.io.FileNotFoundException: /usr/java/jdk1.8.0_121/jre/lib/ext/cldrdata.jar (Too many open files)
at sun.misc.URLClassPath$JarLoader.getResource(URLClassPath.java:1040)
at sun.misc.URLClassPath.getResource(URLClassPath.java:239)
at java.net.URLClassLoader$1.run(URLClassLoader.java:365)
at java.net.URLClassLoader$1.run(URLClassLoader.java:362)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(URLClassLoader.java:361)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at java.lang.ClassLoader.loadClass(ClassLoader.java:411)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:331)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
at java.util.ResourceBundle$RBClassLoader.loadClass(ResourceBundle.java:503)
at java.util.ResourceBundle$Control.newBundle(ResourceBundle.java:2640)
at java.util.ResourceBundle.loadBundle(ResourceBundle.java:1501)
at java.util.ResourceBundle.findBundle(ResourceBundle.java:1465)
at java.util.ResourceBundle.findBundle(ResourceBundle.java:1419)
at java.util.ResourceBundle.getBundleImpl(ResourceBundle.java:1361)
at java.util.ResourceBundle.getBundle(ResourceBundle.java:845)
at java.util.logging.Level.computeLocalizedLevelName(Level.java:265)
at java.util.logging.Level.getLocalizedLevelName(Level.java:324)
at java.util.logging.SimpleFormatter.format(SimpleFormatter.java:165)
at java.util.logging.StreamHandler.publish(StreamHandler.java:211)
at java.util.logging.ConsoleHandler.publish(ConsoleHandler.java:116)
at java.util.logging.Logger.log(Logger.java:738)
at io.netty.util.internal.logging.JdkLogger.log(JdkLogger.java:606)
at io.netty.util.internal.logging.JdkLogger.warn(JdkLogger.java:482)
at io.netty.util.concurrent.SingleThreadEventExecutor$5.run (SingleThreadEventExecutor.java:876)
at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run (DefaultThreadFactory.java:144)
at java.lang.Thread.run(Thread.java:745)

这个时候,我们就应该要知道,这已经是服务器所能接受客户端连接数量的瓶颈值,也就是服务端最大支持870个连接。接下来要做的事情是想办法突破这个瓶颈,让单台服务器也能支持100万连接,这是一件多么激动人心的事情。

2 单机百万连接调优解决思路

2.1 突破局部文件句柄限制

首先在服务端输入命令,看一下单个进程所能支持的最大句柄数。


ulimit -n

输入命令后,会出现1 024的数字,表示Linux系统中一个进程能够打开的最大文件数,由于开启一个TCP连接就会在Linux系统中对应创建一个文件,所以就是受这个文件的最大文件数限制。那为什么前面演示的服务端连接数最终定格在870,比1 024小呢?其实是因为除了连接数,还有JVM打开的文件Class类也算作进程内打开的文件,所以,1 024减去JVM打开的文件数剩下的就是TCP所能支持的连接数。

接下来想办法突破这个限制,首先在服务器命令行输入以下命令,打开/etc/security/limits.conf文件。


sudo vi /etc/security/limits.conf

然后在这个文件末尾加上下面两行代码。


* hard nofile 1000000
* soft nofile 1000000

前面的*表示当前用户,hard和soft分别表示限制和警告限制,nofile表示最大的文件数标识,后面的数字1 000 000表示任何用户都能打开100万个文件,这也是操作系统所能支持的最大值,如下图所示。

接下来,输入以下命令。


ulimit -n

这时候,我们发现还是1 024,没变,重启服务器。将服务端程序和客户端程序分别重新运行,这时候只需静静地观察连接数的变化,最终连接数停留在137 920,同时抛出了异常,如下所示。


当前客户端连接数: 137920
当前客户端连接数: 137920
当前客户端连接数: 137920
当前客户端连接数: 137920
当前客户端连接数: 137920
Exception in thread "nioEventLoopGroup-2-1" java.lang.InternalError: java.io.FileNotFoundException: /usr/java/jdk1.8.0_121/jre/lib/ext/cldrdata.jar (Too many open files)
...

这又是为什么呢?肯定还有地方限制了连接数,想要突破这个限制,就需要突破全局文件句柄数的限制。

2.2 突破全局文件句柄限制

首先在Linux命令行输入以下命令,可以查看Linux系统所有用户进程所能打开的文件数。


cat /proc/sys/fs/file-max

通过上面这个命令可以看到全局的限制,发现得到的结果是10 000。可想而知,局部文件句柄数不能大于全局的文件句柄数。所以,必须将全局的文件句柄数限制调大,突破这个限制。首先切换为ROOT用户,不然没有权限。


sudo -s
echo 2000> /proc/sys/fs/file-max
exit

我们改成20 000来测试一下,继续试验。分别启动服务端程序和客户端程序,发现连接数已经超出了20 000的限制。

前面使用echo来配置/proc/sys/fs/file-max的话,重启服务器就会失效,还会变回原来的10 000,因此,直接用vi命令修改,输入以下命令行。


sodu vi /etc/sysctl.conf

在/etc/sysctl.conf文件末尾加上下面的内容。


fs.file-max=1000000

结果如下图所示。

接下来重启 Linux服务器,再启动服务端程序和客户端程序。


当前客户端连接数: 9812451
当前客户端连接数: 9812462
当前客户端连接数: 9812489
当前客户端连接数: 9812501
当前客户端连接数: 9812503
...

最终连接数定格在 98万左右。我们发现主要受限于本机本身的性能。用htop命令查看一下,发现CPU都接近100%,如下图所示。

以上是操作系统层面的调优和性能提升,下面主要介绍基于Netty应用层面的调优。

3 Netty应用级别的性能调优

3.1 Netty应用级别的性能瓶颈复现

首先来看一下应用场景,下面是一段标准的服务端应用程序代码。



package com.tom.netty.thread;

import io.netty.bootstrap.ServerBootstrap;
import io.netty.channel.*;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioServerSocketChannel;
import io.netty.handler.codec.FixedLengthFrameDecoder; /**
* Created by Tom.
*/
public class Server { private static final int port = 8000; public static void main(String[] args) { EventLoopGroup bossGroup = new NioEventLoopGroup();
EventLoopGroup workerGroup = new NioEventLoopGroup();
final EventLoopGroup businessGroup = new NioEventLoopGroup(1000); ServerBootstrap bootstrap = new ServerBootstrap();
bootstrap.group(bossGroup, workerGroup)
.channel(NioServerSocketChannel.class)
.childOption(ChannelOption.SO_REUSEADDR, true); bootstrap.childHandler(new ChannelInitializer<SocketChannel>() {
@Override
protected void initChannel(SocketChannel ch) {
//自定义长度的解码,每次发送一个long类型的长度数据
//每次传递一个系统的时间戳
ch.pipeline().addLast(new FixedLengthFrameDecoder(Long.BYTES));
ch.pipeline().addLast(businessGroup, ServerHandler.INSTANCE);
}
}); ChannelFuture channelFuture = bootstrap.bind(port).addListener(new ChannelFutureListener() {
public void operationComplete(ChannelFuture channelFuture) throws Exception {
System.out.println("服务端启动成功,绑定端口为: " + port);
}
});
} }

我们重点关注服务端的逻辑处理ServerHandler类。


package com.tom.netty.thread; import io.netty.buffer.ByteBuf;
import io.netty.buffer.Unpooled;
import io.netty.channel.ChannelHandler;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.SimpleChannelInboundHandler; import java.util.concurrent.ThreadLocalRandom; /**
* Created by Tom.
*/
@ChannelHandler.Sharable
public class ServerHandler extends SimpleChannelInboundHandler<ByteBuf> {
public static final ChannelHandler INSTANCE = new ServerHandler(); //channelread0是主线程
@Override
protected void channelRead0(ChannelHandlerContext ctx, ByteBuf msg) {
ByteBuf data = Unpooled.directBuffer();
//从客户端读一个时间戳
data.writeBytes(msg);
//模拟一次业务处理,有可能是数据库操作,也有可能是逻辑处理
Object result = getResult(data);
//重新写回给客户端
ctx.channel().writeAndFlush(result);
} //模拟去数据库获取一个结果
protected Object getResult(ByteBuf data) { int level = ThreadLocalRandom.current().nextInt(1, 1000); //计算出每次响应需要的时间,用来作为QPS的参考数据 //90.0% == 1ms 1000 100 > 1ms
int time;
if (level <= 900) {
time = 1;
//95.0% == 10ms 1000 50 > 10ms
} else if (level <= 950) {
time = 10;
//99.0% == 100ms 1000 10 > 100ms
} else if (level <= 990) {
time = 100;
//99.9% == 1000ms 1000 1 > 1000ms
} else {
time = 1000;
} try {
Thread.sleep(time);
} catch (InterruptedException e) {
} return data;
} }

上面代码中有一个getResult()方法。可以把getResult()方法看作是在数据库中查询数据的一个方法,把每次查询的结果返回给客户端。实际上,为了模拟查询数据性能,getResult()传入的参数是由客户端传过来的时间戳,最终返回的还是客户端传过来的值。只不过返回之前做了一次随机的线程休眠处理,以模拟真实的业务处理性能。如下表所示是模拟场景的性能参数。

数据处理的业务接口占比 处理所耗的时间
90% 1ms
95% 10ms
99% 100ms
99.9% 1000ms

下面来看客户端,也是一段标准的代码。


package com.tom.netty.thread; import io.netty.bootstrap.Bootstrap;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.ChannelOption;
import io.netty.channel.EventLoopGroup;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioSocketChannel;
import io.netty.handler.codec.FixedLengthFrameDecoder; /**
* Created by Tom.
*/
public class Client { private static final String SERVER_HOST = "127.0.0.1"; public static void main(String[] args) throws Exception {
new Client().start(8000);
} public void start(int port) throws Exception {
EventLoopGroup eventLoopGroup = new NioEventLoopGroup();
final Bootstrap bootstrap = new Bootstrap();
bootstrap.group(eventLoopGroup)
.channel(NioSocketChannel.class)
.option(ChannelOption.SO_REUSEADDR, true)
.handler(new ChannelInitializer<SocketChannel>() {
@Override
protected void initChannel(SocketChannel ch) {
ch.pipeline().addLast(new FixedLengthFrameDecoder(Long.BYTES));
ch.pipeline().addLast(ClientHandler.INSTANCE);
}
}); //客户端每秒钟向服务端发起1 000次请求
for (int i = 0; i < 1000; i++) {
bootstrap.connect(SERVER_HOST, port).get();
}
}
}

从上面代码中看到,客户端会向服务端发起1 000次请求。重点来看客户端逻辑处理ClientHandler类。


package com.tom.netty.thread; import io.netty.buffer.ByteBuf;
import io.netty.channel.ChannelHandler;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.SimpleChannelInboundHandler; import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong; /**
* Created by Tom.
*/
@ChannelHandler.Sharable
public class ClientHandler extends SimpleChannelInboundHandler<ByteBuf> {
public static final ChannelHandler INSTANCE = new ClientHandler(); private static AtomicLong beginTime = new AtomicLong(0);
//总响应时间
private static AtomicLong totalResponseTime = new AtomicLong(0);
//总请求数
private static AtomicInteger totalRequest = new AtomicInteger(0); public static final Thread THREAD = new Thread(){
@Override
public void run() {
try {
while (true) {
long duration = System.currentTimeMillis() - beginTime.get();
if (duration != 0) {
System.out.println("QPS: " + 1000 * totalRequest.get() / duration + ", " + "平均响应时间: " + ((float) totalResponseTime.get()) / totalRequest.get() + "ms.");
Thread.sleep(2000);
}
} } catch (InterruptedException ignored) {
}
}
}; @Override
public void channelActive(final ChannelHandlerContext ctx) {
ctx.executor().scheduleAtFixedRate(new Runnable() {
public void run() {
ByteBuf byteBuf = ctx.alloc().ioBuffer();
//将当前系统时间发送到服务端
byteBuf.writeLong(System.currentTimeMillis());
ctx.channel().writeAndFlush(byteBuf);
}
}, 0, 1, TimeUnit.SECONDS);
} @Override
protected void channelRead0(ChannelHandlerContext ctx, ByteBuf msg) {
//获取一个响应时间差,本次请求的响应时间
totalResponseTime.addAndGet(System.currentTimeMillis() - msg.readLong());
//每次自增
totalRequest.incrementAndGet(); if (beginTime.compareAndSet(0, System.currentTimeMillis())) {
THREAD.start();
}
} }

上面代码主要模拟了Netty真实业务环境下的处理耗时情况,QPS大概在1 000次,每2s统计一次。接下来,启动服务端和客户端查看控制台日志。首先运行服务端,看到控制台日志如下图所示。

然后运行客户端,看到控制台日志如下图所示,一段时间之后,发现QPS保持在1 000次以内,平均响应时间越来越长。

回到服务端ServerHander的getResul()方法,在getResult()方法中有线程休眠导致阻塞,不难发现,它最终会阻塞主线程,导致所有的请求挤压在一个线程中。如果把下面的代码放入线程池中,效果将完全不同。


Object result =getResult(data);
ctx.channel().wrteAndFlush(result);

把这两行代码放到业务线程池里,不断在后台运行,运行完成后即时返回结果。

3.2 Netty应用级别的性能调优方案

下面来改造一下代码,在服务端的代码中新建一个ServerThreadPoolHander类。


package com.tom.netty.thread; import io.netty.buffer.ByteBuf;
import io.netty.buffer.Unpooled;
import io.netty.channel.ChannelHandler;
import io.netty.channel.ChannelHandlerContext; import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors; /**
* Created by Tom.
*/
@ChannelHandler.Sharable
public class ServerThreadPoolHandler extends ServerHandler {
public static final ChannelHandler INSTANCE = new ServerThreadPoolHandler();
private static ExecutorService threadPool = Executors.newFixedThreadPool(1000); @Override
protected void channelRead0(final ChannelHandlerContext ctx, ByteBuf msg) {
final ByteBuf data = Unpooled.directBuffer();
data.writeBytes(msg);
threadPool.submit(new Runnable() {
public void run() {
Object result = getResult(data);
ctx.channel().writeAndFlush(result);
}
}); }
}

然后在服务端的Handler处理注册为ServerThreadPoolHander,删除原来的ServerHandler,代码如下。


ch.pipeline().addLast(ServerThreadPoolHandler.INSTANCE);

随后,启动服务端和客户端程序,查看控制台日志,如下图所示。

最终耗时稳定在15ms左右,QPS也超过了1 000次。实际上这个结果还不是最优的状态,继续调整。将ServerThreadPoolHander的线程个数调整到20,代码如下。


public static final ChannelHandler INSTANCE = new ServerThreadPoolHandler();
private static ExecutorService threadPool = Executors.newFixedThreadPool(20);

然后启动程序,发现平均响应时间相差也不是太多,如下图所示。

由此得出的结论是:具体的线程数需要在真实的环境下不断地调整、测试,才能确定最合适的数值。本章旨在告诉大家优化的方法,而不是结果。

本文为“Tom弹架构”原创,转载请注明出处。技术在于分享,我分享我快乐!

如果本文对您有帮助,欢迎关注和点赞;如果您有任何建议也可留言评论或私信,您的支持是我坚持创作的动力。关注微信公众号『 Tom弹架构 』可获取更多技术干货!

这样调优之后,单机也能扛下100W连接的更多相关文章

  1. 性能调优之MYSQL高并发优化下

    三.算法的优化 尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写..使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效 ...

  2. jvm系列(六):jvm调优-从eclipse开始

    jvm调优-从eclipse开始 概述 什么是jvm调优呢?jvm调优就是根据gc日志分析jvm内存分配.回收的情况来调整各区域内存比例或者gc回收的策略:更深一层就是根据dump出来的内存结构和线程 ...

  3. Java性能调优

    一.JVM内存模型及垃圾收集算法 1.根据Java虚拟机规范,JVM将内存划分为: New(年轻代) Tenured(年老代) 永久代(Perm) 其中New和Tenured属于堆内存,堆内存会从JV ...

  4. 性能调优:理解Set Statistics Time输出

    在性能调优:理解Set Statistics IO输出我们讨论了Set Statistics IO,还有如何帮助我们进行性能调优.这篇文章会讨论下Set Statistics Time,它会告诉我们执 ...

  5. JVM性能调优

    摘自:http://uule.iteye.com/blog/2114697 JVM垃圾回收与性能调优总结 JVM调优的几种策略 一.JVM内存模型及垃圾收集算法  1.根据Java虚拟机规范,JVM将 ...

  6. 【Java/Android性能优2】Android性能调优工具TraceView介绍

    本文参考:http://www.trinea.cn/android/android-traceview/ Android自带的TraceView堪比java的性能调优工具visualvm线程视图,可以 ...

  7. jvm 性能调优

    [转载]:http://blog.csdn.net/chen77716/article/details/5695893 最近因项目存在内存泄漏,故进行大规模的JVM性能调优 , 现把经验做一记录. 一 ...

  8. Tomcat和Java Virtual Machine的性能调优总结

    就算生不逢时,也该理解理解了.已经在Java界快混迹3年了,对于一些性能调优的话题我是一直插不上嘴,只是针对昨晚看到的一篇性能调优的文章,我忍不住了. Tomcat性能调优: 找到Tomcat根目录下 ...

  9. (转)JVM性能调优之生成堆的dump文件

    转自:http://blog.csdn.net/lifuxiangcaohui/article/details/37992725 最近因项目存在内存泄漏,故进行大规模的JVM性能调优 , 现把经验做一 ...

随机推荐

  1. 数组字符串json之间的相互转换

    数组转字符串 var arr = [1,2,3,4,'巴德','merge']; var str = arr.join(','); console.log(str); // 1,2,3,4,巴德,me ...

  2. Windows phone 8 触发器使用小结

    引用空间: xmlns:ec="clr-namespace:Microsoft.Expression.Interactivity.Core;assembly=Microsoft.Expres ...

  3. Spring Boot 2.x 之构建Fat Jar和可执行Jar

    Spring Boot提供的Maven插件spring-boot-maven-plugin可以用来构建Fat Jar和可执行Jar. 1.Fat Jar Fat Jar需要使用 java -jar x ...

  4. 【Sass/SCSS 完整自学中文版教程01】SCSS 官方英文文档翻译整理

    Sass 基本介绍 目录 Sass 基本介绍 注释(Comments) 单行注释(Single-line comments) 多行注释(Multi-line comments) SassDoc 特殊的 ...

  5. Django学习day15BBS项目开发3.0

    每日测验 """ 今日考题 1.django admin作用及用法 2.media配置如何实现,基于该配置能够做到什么以及需要注意什么 3.阐述博客园为何支持用户自定义个 ...

  6. 用java代码遍历excel文件并回显

    今天需要完成282个指标,分析后发现好多都是可复用的字段和方法,生成的dao类也是很多重复的代码,所以写下了简单的自动化遍历excel的test方法, excel业务逻辑如下,用了 HSSFSheet ...

  7. 开源ASR服务器vosk

    概述 近几年由于AI的迅速发展,语音相关的自然语言处理NLP项目也变多了,新的技术也越来越成熟,其中TTS(语音生成)和ASR(语音识别)是NLP中非常重要的环节. 今天我们介绍一个开源的ASR项目v ...

  8. chrome 的手机调试工具 toggle device toolbar

    chrome 的手机调试工具 toggle device toolbar 是否可以模拟到不同系统,如苹果系统和安卓系统.

  9. JDBC 基础入门

    由于我也是初学参考的是网上的或者是培训机构的资料所以可能会有错误的信息,仅供参考 一.什么是JDBC(Java Data Base Connectivity)? java程序连接数据库,JDBC是由S ...

  10. Jupyter lab 配置记录,xpython + R 语言

    install.packages(c("repr", "IRdisplay", "evaluate", "crayon" ...