Atcoder M-SOLUTIONS Programming Contest C - Best-of-(2n-1)(无穷级数求和+组合恒等式)
无穷级数求和的简单题,稍微写写吧,正好也算帮我回忆下组合数这一块的内容。
首先我们不妨假设 A 赢,B 赢的情况就直接镜像一下即可。我们枚举 B 在 A 赢之前赢了多少局,设为 \(j\),由于题目规定只要有人赢的局数到达 \(n\) 就停止,因此最后一场比赛必须是 A 赢,而前面相当于在 \(n-1+j\) 个场次中选择 \(n-1\) 场留给 A 赢,剩余留给 B 赢,方案数 \(\dbinom{n-1+j}{n-1}\),而 A 赢 \(n\) 场的概率为 \(A^n\),B 赢 \(j\) 场的概率为 \(B^j\),因此这部分的概率为 \(\dbinom{n-1+j}{n-1}\times A^n\times B^j\)。
接下来考虑平局的问题,按照套路我们枚举有多少次平局,设为 \(i\),显然 \(i\) 场平局的概率为 \(C^i\),而将 \(i\) 场平局插入原本 \(n-1+j\) 场分出胜负的比赛,根据隔板法可知方案数为 \(\dbinom{n-1+j+i}{i}\),最后乘上个比赛次数 \(i+j+n\) 就是期望,因此我们可以初步得到答案的表达式:
\]
由于这是个无穷级数,无法直接求和,需将其转化为封闭形式后再计算。注意到后面的 \(\sum\limits_{i=0}^{\infty}C^i\dbinom{n-1+j+i}{i}\times(n+j+i)\),如果不看那个 \(\times(n+j+i)\),是非常容易转化为封闭形式的,根据生成函数的知识它就是 \(\dfrac{1}{(1-C)^{n+j}}\),重点在于后面的 \(\times(n+j+i)\) 怎样处理,一个想法是将 \(n+j+i\) 拆成 \(n+j\) 和 \(i\),前面的 \(\sum\limits_{i=0}^{\infty}C^i\dbinom{n-1+j+i}{i}\times(n+j)\) 相当好处理,直接乘个 \(n+j\) 即可,但是 \(\sum\limits_{i=0}^{\infty}C^i\dbinom{n-1+j+i}{i}\times i\) 比较棘手,我花费了九牛二虎之力找这东西的封闭形式,xtbz,果然 wtcl 了啊(
注意到 \((n+j+i)\) 与前面二项式系数的 \(n-1+j+i\) 只差一个 \(1\),因此很容易联想到吸收恒等式 \(\dbinom{n}{k}\times k=\dbinom{n-1}{k-1}\times n\),但是如果直接化后面还是会多出个 \(i\),等于啥都没干,不过显然 \(\dbinom{n-1+j+i}{i}=\dbinom{n-1+j+i}{n+j-1}\),而 \(\dbinom{n-1+j+i}{n+j-1}\times(n+j+i)=\dbinom{n+j+i}{n+j}\times(n+j)=\dbinom{n+j+i}{i}\times(n+j)\),故 \(\sum\limits_{i=0}^{\infty}C^i\dbinom{n-1+j+i}{i}\times(n+j+i)=\sum\limits_{i=0}^{\infty}C^i\dbinom{n+j+i}{i}\times(n+j)\),噫,好,\(i\) 没了,这下就可以直接套公式求和了,故:
\]
随便算一下即可,时间复杂度 \(\mathcal O(n)/\mathcal O(n\log n)\),取决于你怎么实现。
最后,无限 orz ycx,他的方法比我不知道简便到哪里去了 !!!11
const int MAXN=2e5;
const int INV100=5.7e8+4;
const int MOD=1e9+7;
int qpow(int x,int e){
int ret=1;
for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
return ret;
}
int n,A,B,C,fac[MAXN*2+5],ifac[MAXN*2+5];
void init_fac(int n){
fac[0]=ifac[0]=ifac[1]=1;
for(int i=2;i<=n;i++) ifac[i]=1ll*ifac[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%MOD,ifac[i]=1ll*ifac[i-1]*ifac[i]%MOD;
}
int binom(int x,int y){return 1ll*fac[x]*ifac[y]%MOD*ifac[x-y]%MOD;}
int main(){
scanf("%d%d%d%d",&n,&A,&B,&C);
A=1ll*A*INV100%MOD;B=1ll*B*INV100%MOD;C=1ll*C*INV100%MOD;
init_fac(n*2);C=qpow(MOD+1-C,MOD-2);int ans=0;
// printf("%d %d %d\n",A,B,C);
for(int i=0;i<n;i++){
ans=(ans+1ll*binom(n-1+i,n-1)*qpow(A,n)%MOD*qpow(B,i)%MOD*qpow(C,n+i+1)%MOD*(n+i))%MOD;
ans=(ans+1ll*binom(n-1+i,n-1)*qpow(B,n)%MOD*qpow(A,i)%MOD*qpow(C,n+i+1)%MOD*(n+i))%MOD;
} printf("%d\n",ans);
return 0;
}
Atcoder M-SOLUTIONS Programming Contest C - Best-of-(2n-1)(无穷级数求和+组合恒等式)的更多相关文章
- AtCoder SoundHound Inc. Programming Contest 2018 E + Graph (soundhound2018_summer_qual_e)
原文链接https://www.cnblogs.com/zhouzhendong/p/AtCoder-SoundHound-Inc-Programming-Contest-2018-E.html 题目 ...
- AtCoder diverta 2019 Programming Contest 2
AtCoder diverta 2019 Programming Contest 2 看起来我也不知道是一个啥比赛. 然后就写写题解QWQ. A - Ball Distribution 有\(n\)个 ...
- 【AtCoder】M-SOLUTIONS Programming Contest
M-SOLUTIONS Programming Contest A - Sum of Interior Angles #include <bits/stdc++.h> #define fi ...
- 【AtCoder】AISing Programming Contest 2019
本来以为是1199rated的..仔细一看发现是1999,所以就做了一下 这场涨分很轻松啊...为啥又没打 等pkuwc考完我一定打一场atcoder(咕咕咕,咕咕咕,咕咕咕咕咕咕咕~) 但是其实我思 ...
- Atcoder ZONe Energy Programming Contest C - MAD TEAM(二分)
文章目录 题面 Sample Input Sample output 题解 CODE 别的做法 暴力 Dynamic Programming 题面 你想从 N N N 个候选人中选 3 个人. 每个人 ...
- 【AtCoder】Yahoo Programming Contest 2019
A - Anti-Adjacency K <= (N + 1) / 2 #include <bits/stdc++.h> #define fi first #define se se ...
- 【AtCoder】KEYENCE Programming Contest 2019
A - Beginning 这个年份恐怕需要+2 #include <bits/stdc++.h> #define fi first #define se second #define p ...
- 【AtCoder】Dwango Programming Contest V题解
A - Thumbnail 题意简述:给出N个数,找出N个数中和这N个数平均值绝对值最小的数 根据题意写代码即可= = #include <bits/stdc++.h> #define f ...
- [AtCoder] NIKKEI Programming Contest 2019 (暂缺F)
[AtCoder] NIKKEI Programming Contest 2019 本来看见这一场的排名的画风比较正常就来补一下题,但是完全没有发现后两题的AC人数远少于我补的上一份AtCoder ...
随机推荐
- 实现服务器和客户端数据交互,Java Socket有妙招
摘要:在Java SDK中,对于Socket原生提供了支持,它分为ServerSocket和Socket. 本文分享自华为云社区<Java Socket 如何实现服务器和客户端数据交互>, ...
- Linux主机入侵检测
检查系统信息.用户账号信息 ● 操作系统信息 cat /proc/version 用户信息 用户信息文件 /etc/passwd root:x:0:0:root:/root:/bin/bash 用户名 ...
- Google Object detection配置与使用
Google Object detection 前言: 本文记录了使用Google发布的Object detection(July 1st, 2019)接口,完成了对标注目标的检测.参考了很多博文,在 ...
- [对对子队]Alpha阶段项目展示博客
Alpha阶段项目展示博客 1 团队成员的简介和个人博客地址 成员 头像 岗位 博客 个人介绍 黄贤昊 PM 17373253 喜欢玩游戏和做游戏,项目经验基本都和游戏相关,擅长摸鱼,偶尔敬业. 刘子 ...
- 设置nginx进程可打开最大的文件数
涉及到的nginx配置参数: worker_processes: 表示操作系统启动多少个工作进程在运行,一般这个参数设置成CPU核数的倍数 worker_connections:表示nginx的工作进 ...
- 梦开始的地方(Noip模拟3) 2021.5.24
T1 景区路线规划(期望dp/记忆化搜索) 一看题目发现肯定是概率期望题,再仔细想想这三天做的题,就知道是个期望dp. 考试思路(错): 因为聪聪与可可的10分打法根深蒂固,导致在考试时想到了用深搜( ...
- PCB板HDI板几阶是什么意思
http://blog.sina.com.cn/s/blog_55ff6d5d0102xxvx.html
- 零基础学习C语言字符串操作总结大全
本篇文章是对C语言字符串操作进行了详细的总结分析,需要的朋友参考下 1)字符串操作 strcpy(p, p1) 复制字符串 strncpy(p, p1, n) 复制指定长度字符串 strcat(p, ...
- populating-next-right-pointers-in-each-node leetcode C++
Given a binary tree struct TreeLinkNode { TreeLinkNode *left; TreeLinkNode *right; TreeLinkNode *nex ...
- CVAT 用户指南
用户指南 计算机视觉标注工具(CVAT)是基于 Web 为计算机视觉算法标注视频和图像的在线工具. 它的灵感来自Vatic免费的.在线的.交互式的视频注释工具. CVAT有许多强大的功能: 在关键帧之 ...