Atcoder M-SOLUTIONS Programming Contest C - Best-of-(2n-1)(无穷级数求和+组合恒等式)
无穷级数求和的简单题,稍微写写吧,正好也算帮我回忆下组合数这一块的内容。
首先我们不妨假设 A 赢,B 赢的情况就直接镜像一下即可。我们枚举 B 在 A 赢之前赢了多少局,设为 \(j\),由于题目规定只要有人赢的局数到达 \(n\) 就停止,因此最后一场比赛必须是 A 赢,而前面相当于在 \(n-1+j\) 个场次中选择 \(n-1\) 场留给 A 赢,剩余留给 B 赢,方案数 \(\dbinom{n-1+j}{n-1}\),而 A 赢 \(n\) 场的概率为 \(A^n\),B 赢 \(j\) 场的概率为 \(B^j\),因此这部分的概率为 \(\dbinom{n-1+j}{n-1}\times A^n\times B^j\)。
接下来考虑平局的问题,按照套路我们枚举有多少次平局,设为 \(i\),显然 \(i\) 场平局的概率为 \(C^i\),而将 \(i\) 场平局插入原本 \(n-1+j\) 场分出胜负的比赛,根据隔板法可知方案数为 \(\dbinom{n-1+j+i}{i}\),最后乘上个比赛次数 \(i+j+n\) 就是期望,因此我们可以初步得到答案的表达式:
\]
由于这是个无穷级数,无法直接求和,需将其转化为封闭形式后再计算。注意到后面的 \(\sum\limits_{i=0}^{\infty}C^i\dbinom{n-1+j+i}{i}\times(n+j+i)\),如果不看那个 \(\times(n+j+i)\),是非常容易转化为封闭形式的,根据生成函数的知识它就是 \(\dfrac{1}{(1-C)^{n+j}}\),重点在于后面的 \(\times(n+j+i)\) 怎样处理,一个想法是将 \(n+j+i\) 拆成 \(n+j\) 和 \(i\),前面的 \(\sum\limits_{i=0}^{\infty}C^i\dbinom{n-1+j+i}{i}\times(n+j)\) 相当好处理,直接乘个 \(n+j\) 即可,但是 \(\sum\limits_{i=0}^{\infty}C^i\dbinom{n-1+j+i}{i}\times i\) 比较棘手,我花费了九牛二虎之力找这东西的封闭形式,xtbz,果然 wtcl 了啊(
注意到 \((n+j+i)\) 与前面二项式系数的 \(n-1+j+i\) 只差一个 \(1\),因此很容易联想到吸收恒等式 \(\dbinom{n}{k}\times k=\dbinom{n-1}{k-1}\times n\),但是如果直接化后面还是会多出个 \(i\),等于啥都没干,不过显然 \(\dbinom{n-1+j+i}{i}=\dbinom{n-1+j+i}{n+j-1}\),而 \(\dbinom{n-1+j+i}{n+j-1}\times(n+j+i)=\dbinom{n+j+i}{n+j}\times(n+j)=\dbinom{n+j+i}{i}\times(n+j)\),故 \(\sum\limits_{i=0}^{\infty}C^i\dbinom{n-1+j+i}{i}\times(n+j+i)=\sum\limits_{i=0}^{\infty}C^i\dbinom{n+j+i}{i}\times(n+j)\),噫,好,\(i\) 没了,这下就可以直接套公式求和了,故:
\]
随便算一下即可,时间复杂度 \(\mathcal O(n)/\mathcal O(n\log n)\),取决于你怎么实现。
最后,无限 orz ycx,他的方法比我不知道简便到哪里去了 !!!11
const int MAXN=2e5;
const int INV100=5.7e8+4;
const int MOD=1e9+7;
int qpow(int x,int e){
int ret=1;
for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
return ret;
}
int n,A,B,C,fac[MAXN*2+5],ifac[MAXN*2+5];
void init_fac(int n){
fac[0]=ifac[0]=ifac[1]=1;
for(int i=2;i<=n;i++) ifac[i]=1ll*ifac[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%MOD,ifac[i]=1ll*ifac[i-1]*ifac[i]%MOD;
}
int binom(int x,int y){return 1ll*fac[x]*ifac[y]%MOD*ifac[x-y]%MOD;}
int main(){
scanf("%d%d%d%d",&n,&A,&B,&C);
A=1ll*A*INV100%MOD;B=1ll*B*INV100%MOD;C=1ll*C*INV100%MOD;
init_fac(n*2);C=qpow(MOD+1-C,MOD-2);int ans=0;
// printf("%d %d %d\n",A,B,C);
for(int i=0;i<n;i++){
ans=(ans+1ll*binom(n-1+i,n-1)*qpow(A,n)%MOD*qpow(B,i)%MOD*qpow(C,n+i+1)%MOD*(n+i))%MOD;
ans=(ans+1ll*binom(n-1+i,n-1)*qpow(B,n)%MOD*qpow(A,i)%MOD*qpow(C,n+i+1)%MOD*(n+i))%MOD;
} printf("%d\n",ans);
return 0;
}
Atcoder M-SOLUTIONS Programming Contest C - Best-of-(2n-1)(无穷级数求和+组合恒等式)的更多相关文章
- AtCoder SoundHound Inc. Programming Contest 2018 E + Graph (soundhound2018_summer_qual_e)
原文链接https://www.cnblogs.com/zhouzhendong/p/AtCoder-SoundHound-Inc-Programming-Contest-2018-E.html 题目 ...
- AtCoder diverta 2019 Programming Contest 2
AtCoder diverta 2019 Programming Contest 2 看起来我也不知道是一个啥比赛. 然后就写写题解QWQ. A - Ball Distribution 有\(n\)个 ...
- 【AtCoder】M-SOLUTIONS Programming Contest
M-SOLUTIONS Programming Contest A - Sum of Interior Angles #include <bits/stdc++.h> #define fi ...
- 【AtCoder】AISing Programming Contest 2019
本来以为是1199rated的..仔细一看发现是1999,所以就做了一下 这场涨分很轻松啊...为啥又没打 等pkuwc考完我一定打一场atcoder(咕咕咕,咕咕咕,咕咕咕咕咕咕咕~) 但是其实我思 ...
- Atcoder ZONe Energy Programming Contest C - MAD TEAM(二分)
文章目录 题面 Sample Input Sample output 题解 CODE 别的做法 暴力 Dynamic Programming 题面 你想从 N N N 个候选人中选 3 个人. 每个人 ...
- 【AtCoder】Yahoo Programming Contest 2019
A - Anti-Adjacency K <= (N + 1) / 2 #include <bits/stdc++.h> #define fi first #define se se ...
- 【AtCoder】KEYENCE Programming Contest 2019
A - Beginning 这个年份恐怕需要+2 #include <bits/stdc++.h> #define fi first #define se second #define p ...
- 【AtCoder】Dwango Programming Contest V题解
A - Thumbnail 题意简述:给出N个数,找出N个数中和这N个数平均值绝对值最小的数 根据题意写代码即可= = #include <bits/stdc++.h> #define f ...
- [AtCoder] NIKKEI Programming Contest 2019 (暂缺F)
[AtCoder] NIKKEI Programming Contest 2019 本来看见这一场的排名的画风比较正常就来补一下题,但是完全没有发现后两题的AC人数远少于我补的上一份AtCoder ...
随机推荐
- (类)Program1.1
1 class MyClass: 2 3 i = 12345 4 5 def __init__(self): 6 self.data = "WOOWOWOWO" 7 8 def f ...
- 牛客网 剑指Offer 索引
二维数组中的查找 替换空格 从尾到头打印链表 重建二叉树 用两个栈实现队列 旋转数组的最小数字 斐波那契数列 跳台阶 变态跳台阶 矩形覆盖 二进制中1的个数 数值的整数次方 调整数组顺序使奇数位于偶数 ...
- 一步一步学ROP之linux_x86篇(蒸米spark)
目录 一步一步学ROP之linux_x86篇(蒸米spark) 0x00 序 0x01 Control Flow Hijack 程序流劫持 0x02 Ret2libc – Bypass DEP 通过r ...
- linux 安装docker(一)
1.安装环境 此处在Centos7进行安装,可以使用以下命令查看CentOS版本 lsb_release -a 在 CentOS 7安装docker要求系统为64位.系统内核版本为 3.10 以上,可 ...
- 02-Java中的锁详解
I. 使用Lock接口 只要不涉及到复杂用法,一般采用的是Java的synchronized机制 不过,Lock可以提供一些synchronized不支持的机制 非阻塞的获取锁:尝试获取锁,如果能获取 ...
- Go语言并发模型 G源码分析
Go 的线程实现模型,有三个核心的元素 M.P.G,它们共同支撑起了这个线程模型的框架.其中,G 是 goroutine 的缩写,通常称为 "协程".关于协程.线程和进程三者的异同 ...
- vue禁用浏览器回退
解决方案 mounted() { history.pushState(null, null, document.URL) window.addEventListener('popstate', () ...
- 经过4次优化我把python代码耗时减少95%
背景交代 团队做大学英语四六级考试相关服务.业务中有一个care服务,购买了care服务考试不过可以全额退款,不过有一个前提是要完成care服务的任务,比如坚持背单词N天,完成指定的试卷. 在这个背景 ...
- hdfs command
hadoop fs -ls hdfs dfs -mkdir -p /user/$(whoami) hdfs dfs -chown -R $(whoami) /user/$(whoami) hdfs d ...
- MAC电脑如何将常规视频中音频提取出来(转换格式并调整采样频率),并利用讯飞语音识别文字
1.下载好相关视频 2.选中需要提取视频,鼠标右键找到「编码所选视频文件」 3.设置中,下拉选择「仅音频」,点击继续 4.找到已提取成功的音频,鼠标右键或快捷键「command + I」,显示简介.默 ...