Codeforces 题面传送门 & 洛谷题面传送门

分类讨论神题。

首先看到最大值最小,一眼二分答案,于是问题转化为判定性问题,即是否 \(\exists x_0,y_0,z_0\) 满足 \(\forall i,|x_0-x_i|+|y_0-y_i|+|z_0-z_i|\le mid\)。

柿子中带个绝对值,不好直接转化。不过注意到对于任意实数 \(x\) 都有 \(x\le |x|,-x\le |x|\),因此 \(|x-y|\le v\) 的充要条件即是 \(x-y\le v,y-x\le v\),因此上式可以把绝对值拆开得到:

\[\begin{cases}
x_0-x_i+y_0-y_i+z_0-z_i\le mid\\
x_0-x_i+y_0-y_i+z_i-z_0\le mid\\
x_0-x_i+y_i-y_0+z_0-z_i\le mid\\
x_0-x_i+y_i-y_0+z_i-z_0\le mid\\
x_i-x_0+y_0-y_i+z_0-z_i\le mid\\
x_i-x_0+y_0-y_i+z_i-z_0\le mid\\
x_i-x_0+y_i-y_0+z_0-z_i\le mid\\
x_i-x_0+y_i-y_0+z_i-z_0\le mid
\end{cases}
\]

将上式整理一下可以得到:

\[\begin{cases}
x_i+y_i+z_i-mid\le x_0+y_0+z_0\le x_i+y_i+z_i+mid\\
-x_i+y_i+z_i-mid\le -x_0+y_0+z_0\le -x_i+y_i+z_i+mid\\
x_i-y_i+z_i-mid\le x_0-y_0+z_0\le x_i-y_i+z_i+mid\\
x_i+y_i-z_i-mid\le x_0+y_0-z_0\le x_i+y_i-z_i+mid
\end{cases}
\]

记 \(A_{l}=\max\limits_{i=1}^nx_i+y_i+z_i-mid,A_{r}=\min\limits_{i=1}^nx_i+y_i+z_i-mid\),\(B_{l},B_r,C_l,C_r,D_l,D_r\) 也同理,那么显然上述柿子可以等效于:

\[\begin{cases}
A_l\le x_0+y_0+z_0\le A_r\\
B_l\le -x_0+y_0+z_0\le B_r\\
C_l\le x_0-y_0+z_0\le C_r\\
D_l\le x_0+y_0+z_0\le D_r
\end{cases}
\]

注意到这四个不等式中间一项都带三个未知数,不好处理,不过这三个未知数之间又存在某种联系,因此考虑记 \(a=-x_0+y_0+z_0,b=x_0-y_0+z_0,c=x_0+y_0-z_0\),那么有 \(x_0=\dfrac{b+c}{2},y_0=\dfrac{a+c}{2},z_0=\dfrac{a+b}{2}\)。我们还可以注意到 \(x_0+y_0+z_0=a+b+c\),因此柿子又转化为

\[\begin{cases}
A_l\le a+b+c\le A_r\\
B_l\le a\le B_r\\
C_l\le b\le C_r\\
D_l\le c\le D_r
\end{cases}
\]

当然这里有一个 restriction 是 \(x_0,y_0,z_0\) 必须都是整数,因此必须有 \(a\equiv b\equiv c\pmod{2}\)。故考虑枚举 \(r=a\bmod 2\),记 \(a'=\dfrac{a-r}{2},b'=\dfrac{b-r}{2},c'=\dfrac{c-r}{2}\),那么上式又变为:

\[\begin{cases}
\lceil\dfrac{A_l-3r}{2}\rceil\le a'+b'+c'\le\lfloor\dfrac{A_r-3r}{2}\rfloor\\
\lceil\dfrac{B_l-r}{2}\rceil\le a'\le\lfloor\dfrac{B_r-r}{2}\rfloor\\
\lceil\dfrac{C_l-r}{2}\rceil\le b'\le\lfloor\dfrac{C_r-r}{2}\rfloor\\
\lceil\dfrac{D_l-r}{2}\rceil\le c'\le\lfloor\dfrac{D_r-r}{2}\rfloor
\end{cases}
\]

这个随便求一求就行了,我相信即便刚学过 OI 的应该也会罢。

时间复杂度 \(n\log A\),其中 \(A=\max\{a_i\}\)

const int MAXN=1e5;
const ll INF=7e18;
int n;ll x[MAXN+5],y[MAXN+5],z[MAXN+5],X,Y,Z;
ll down(ll x){return (x>=0)?(x>>1):(-(-x+1>>1));}//\lfloor x/2 \rfloor
ll up(ll x){return (x>=0)?(x+1>>1):(-(-x>>1));}//\lceil x/2 \rceil
bool check(ll mid){
ll al=-INF,ar=INF,bl=-INF,br=INF;
ll cl=-INF,cr=INF,dl=-INF,dr=INF;
for(int i=1;i<=n;i++){
chkmax(al,x[i]+y[i]+z[i]-mid);chkmin(ar,x[i]+y[i]+z[i]+mid);
chkmax(bl,-x[i]+y[i]+z[i]-mid);chkmin(br,-x[i]+y[i]+z[i]+mid);
chkmax(cl,x[i]-y[i]+z[i]-mid);chkmin(cr,x[i]-y[i]+z[i]+mid);
chkmax(dl,x[i]+y[i]-z[i]-mid);chkmin(dr,x[i]+y[i]-z[i]+mid);
}
for(int r=0;r<2;r++){
ll wl=up(al-3*r),wr=down(ar-3*r);
ll xl=up(bl-r),xr=down(br-r);
ll yl=up(cl-r),yr=down(cr-r);
ll zl=up(dl-r),zr=down(dr-r);
if(wl<=wr&&xl<=xr&&yl<=yr&&zl<=zr&&xl+yl+zl<=wr&&xr+yr+zr>=wl){
ll a=xl,b=yl,c=zl,need=max(0ll,wl-xl-yl-zl);
a+=min(need,xr-xl);need-=min(need,xr-xl);
b+=min(need,yr-yl);need-=min(need,yr-yl);
c+=min(need,zr-zl);need-=min(need,zr-zl);
a=(a<<1|r);b=(b<<1|r);c=(c<<1|r);
X=b+c>>1;Y=c+a>>1;Z=a+b>>1;return 1;
}
} return 0;
}
void solve(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%lld%lld%lld",&x[i],&y[i],&z[i]);
ll l=0,r=INF>>1,p=-1;
while(l<=r){
ll mid=l+r>>1;
if(check(mid)) p=mid,r=mid-1;
else l=mid+1;
} check(p);//printf("%lld\n",p);
printf("%lld %lld %lld\n",X,Y,Z);
}
int main(){
int qu;scanf("%d",&qu);
while(qu--) solve();
return 0;
}

Codeforces 685C - Optimal Point(分类讨论+乱搞)的更多相关文章

  1. Codeforces 1513F - Swapping Problem(分类讨论+乱搞)

    Codeforces 题目传送门 & 洛谷题目传送门 简单题,难度 *2500 的 D2F,就当调节一下一模炸裂了的自闭的心情,稍微写写吧. 首先我看到这题的第一反应是分类讨论+数据结构,即枚 ...

  2. codeforces 653C C. Bear and Up-Down(乱搞题)

    题目链接: C. Bear and Up-Down time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  3. Codeforces Gym 100203G Good elements 暴力乱搞

    原题链接:http://codeforces.com/gym/100203/attachments/download/1702/statements.pdf 题解 考虑暴力的复杂度是O(n^3),所以 ...

  4. CodeForces 81D.Polycarp's Picture Gallery 乱搞

    D. Polycarp's Picture Gallery time limit per test 2 seconds memory limit per test 256 megabytes inpu ...

  5. CodeForces 788B - Weird journey [ 分类讨论 ] [ 欧拉通路 ]

    题意: 给出无向图. good way : 仅有两条边只经过一次,余下边全经过两次的路 问你共有多少条不同的good way. 两条good way不同仅当它们所经过的边的集合中至少有一条不同 (很关 ...

  6. @codeforces - 685C@ Optimal Point

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定若干个三维空间的点 (xi, yi, zi),求一个坐标都为 ...

  7. Codeforces 1461F - Mathematical Expression(分类讨论+找性质+dp)

    现场 1 小时 44 分钟过掉此题,祭之 大力分类讨论. 如果 \(|s|=1\),那么显然所有位置都只能填上这个字符,因为你只能这么填. scanf("%d",&n);m ...

  8. Playrix Codescapes Cup (Codeforces Round #413, rated, Div. 1 + Div. 2)(A.暴力,B.优先队列,C.dp乱搞)

    A. Carrot Cakes time limit per test:1 second memory limit per test:256 megabytes input:standard inpu ...

  9. CodeForces - 789B B. Masha and geometric depression---(水坑 分类讨论)

    CodeForces - 789B 当时题意理解的有点偏差,一直wa在了14组.是q等于0的时候,b1的绝对值大于l的时候,当b1的绝对值大于l的时候就应该直接终端掉,不应该管后面的0的. 题意告诉你 ...

随机推荐

  1. 2 What is the Domain Driven Design? 什么是领域驱动设计

    What is the Domain Driven Design? 什么是领域驱动设计 Domain-driven design (DDD) is an approach to software de ...

  2. 2021.10.15考试总结[NOIP模拟77]

    \(n=40\)考虑\(meet \;in \;the \;middle\) 某个元素有关的量只有一个时考虑转化为树上问题 对暴力有自信,相信数据有梯度 没了 UPD:写了个略说人话的. T1 最大或 ...

  3. 常用Java API:Math类

    求最值 最小值 Math.min(int a, int b) Math.min(float a, float b) Math.min(double a, doubleb) Math.min(long ...

  4. 洛谷 P4774 [NOI2018] 屠龙勇士

    链接:P4774 前言: 交了18遍最后发现是多组数据没清空/ll 题意: 其实就是个扩中. 分析过程: 首先发现根据题目描述的选择剑的方式,每条龙对应的剑都是固定的,有查询前驱,后继(在该数不存在前 ...

  5. 正则表达式匹配 牛客网 剑指Offer

    正则表达式匹配 牛客网 剑指Offer 题目描述 请实现一个函数用来匹配包括'.'和''的正则表达式.模式中的字符'.'表示任意一个字符,而''表示它前面的字符可以出现任意次(包含0次). 在本题中, ...

  6. django HTML 数据处理

    一.介绍 dgango  HTML 对 各种数据类型数据的调用展示 的个人工作总结 二.数据处理 1.元祖数据   t1 =('a','b','c',) 示例:    {{ t1.0 }}    {{ ...

  7. 一文带你理解TDengine中的缓存技术

    作者 | 王明明,涛思数据软件工程师 小 T 导读:在计算机系统中,缓存是一种常用的技术,既有硬件缓存,比如我们经常听到的 CPU L2 高速缓存,也有软件缓存,比如很多系统里把 Redis 当做数据 ...

  8. fabric运行错误汇总

    Error generating signCA for org org1.example.com: Failed storing key [ECDSAP256]: Failed storing ECD ...

  9. nio实现文件夹内容的监听

    参考的博客 package com.jp.filemonitor; import java.io.IOException; import java.nio.file.FileSystems; impo ...

  10. SpringCloud升级之路2020.0.x版-34.验证重试配置正确性(2)

    本系列代码地址:https://github.com/JoJoTec/spring-cloud-parent 我们继续上一节针对我们的重试进行测试 验证针对限流器异常的重试正确 通过系列前面的源码分析 ...