NFLSOJ 1072 - 【2021 六校联合训练 NOIP #1】异或(FWT+插值)
一道非常不错的 FWT+插值的题 %%%%%%%%%%%%
还是那句话,反正非六校的看不到题对吧(((
方便起见在下文中设 \(n=2^d\)。
首先很明显的一点是这题涉及两个维度:异或和与选出的元素的个数。因此考虑像子集卷积那样建立一个二元生成函数表示这个东西,具体来说我们定义一个幂级数 \(F\) 形如 \(\sum\limits_{n\ge 0}\sum\limits_{m\ge 0}f_{n,m}x^ny^m\),并定义两个幂级数 \(F,G\) 的乘法得到的幂级数 \(H\) 满足 \(H_{i,j}=\sum\limits_{p\oplus q=i}\sum\limits_{r+s=j}F_{p,r}G_{q,s}\),那么这样我们相当于将所有 \(F_i(x,y)=1+a_ix^{i}y\) 乘起来,具体来说,设 \(G=\prod\limits_{i=0}^{n-1}1+a_ix^iy\),那么 \(res_i=\sum\limits_{j=0}^{n-1}[x^jy^i]G·b_j\),或者如果我们将答案的生成函数视作一个整体 \(R(x)\),那么 \(R(x)=\sum\limits_{j=0}^{n-1}[x^j]G·b_j\)。
考虑怎么求解 \(G\),按照子集卷积的套路我们考虑定某个东西为主元,在这题中我们考虑定 \(x\) 为主元,那么所有集合幂级数 \(F\) 都可以写成 \(\sum\limits_{i=0}^{n-1}F_i(y)x^i\),其中 \(F_i(y)\) 为某个关于 \(y\) 的多项式。这样一来两个幂级数做乘法则相当于对两个以形式幂级数为系数的集合幂级数做 xor 卷积,因此考虑将每个集合幂级数都 FWTxor 一遍,对应项相乘再 IFWTxor 回去即可得到上文中所说的 \(G\)。具体来说,显然 \(\text{FWT}(F_i(x,y))=\sum\limits_{j=0}^{n-1}(1+(-1)^{\text{builtin\_popcount}(i\&j)}a_iy)·x^j\),因此对应项相乘就有 \(\text{FWT}(G)=\sum\limits_{j=0}^{n-1}(\prod\limits_{i=0}^{n-1}(1+(-1)^{\text{builtin\_popcount}(i\&j)}a_iy))·x^j\),再 IFWTxor 回去即可算出真正的 \(G\),进而求出答案。
但是这样暴力操作复杂度还是会出问题,考虑优化。首先注意到 IFWTxor 是个线性变换,因此我们考虑不将 IFWTxor 作用与 \(\text{FWT}(G)\),instead 我们将其作用于 \(b\),也就是说答案的多项式 \(R(x)\) 可以写成 \(\sum\limits_{j=0}^{n-1}[x^j]G·b'_j\),其中 \(b’=\text{IFWT}(b)\),即
\]
考虑怎么求解后面那个东西,我们考虑用类似于 FWTxor 的东西求解。考虑分治,具体来说当我们求一排这样的多项式的乘积时候将序列分成左右两部分 \(F_1(x),F_2(x)\),那么合并时候,对于所有 \(i\in[0,\dfrac{n}{2})\),仿照 FWTxor 的套路则有 \(F_i(x)=F_{1,i}(x)F_{2,i}(x),F_{i+n/2}(x)=F_{1,i}(x)F_{2,i}(-x)\),如果直接莽个 MTT 上去复杂度是 \(d^24^d\) 的,并且自带大常数,无法通过,不过注意到最后答案序列也是一个 \(n\) 次多项式,因此考虑插值。具体来说,我们使用上述方法求出以上 \(n\) 个多项式在 \(-\dfrac{n}{2},-\dfrac{n}{2}+1,\cdots,0,\cdots,\dfrac{n}{2}-1,\dfrac{n}{2}\) 处的点值,这样可以在 \(\mathcal O(n^2)\) 时间内计算出 \(R(x)\) 在 \(-\dfrac{n}{2},-\dfrac{n}{2}+1,\cdots,0,\cdots,\dfrac{n}{2}-1,\dfrac{n}{2}\),再一遍拉格朗日插值即可得到 \(R(x)\) 的系数。
时间复杂度 \(4^d·d\)
const int MAXN=2052;
const int MOD=1e9+7;
const int INV2=5e8+4;
int n,d,a[MAXN+5],b[MAXN+5],sum[MAXN+5];
int val[MAXN+5][MAXN+5],tmp[MAXN+5][MAXN+5];
void FWTxor(int *a,int len,int type){
for(int i=2;i<=len;i<<=1)
for(int j=0;j<len;j+=i)
for(int k=0;k<(i>>1);k++){
int X=a[j+k],Y=a[(i>>1)+j+k];
a[j+k]=1ll*type*(X+Y)%MOD;
a[(i>>1)+j+k]=1ll*type*(X-Y+MOD)%MOD;
}
}
int prd[MAXN+5],dv[MAXN+5];
int inv[MAXN+5],ss[MAXN+5];
int getinv(int x){return (x<0)?(MOD-inv[-x]):inv[x];}
void init_fac(int n){
for(int i=(inv[0]=inv[1]=1)+1;i<=n;i++) inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
}
int main(){
scanf("%d",&d);n=1<<d;init_fac(MAXN);
for(int i=0;i<n;i++) scanf("%d",&a[i]);
for(int i=0;i<n;i++) scanf("%d",&b[i]);
FWTxor(b,n,INV2);
for(int i=0;i<n;i++) for(int j=-n>>1;j<=(n>>1);j++)
val[i][j+(n>>1)]=(1+1ll*a[i]*j%MOD+MOD)%MOD;
for(int i=2;i<=n;i<<=1){
memset(tmp,0,sizeof(tmp));
for(int j=0;j<n;j+=i)
for(int k=0;k<(i>>1);k++)
for(int x=-n>>1;x<=(n>>1);x++){
tmp[j+k][x+(n>>1)]=1ll*val[j+k][x+(n>>1)]*val[(i>>1)+j+k][x+(n>>1)]%MOD;
tmp[(i>>1)+j+k][x+(n>>1)]=1ll*val[j+k][x+(n>>1)]*val[(i>>1)+j+k][-x+(n>>1)]%MOD;
}
for(int j=0;j<n;j++) for(int k=0;k<=n;k++)
val[j][k]=tmp[j][k];
}
for(int j=0;j<n;j++) for(int k=0;k<=n;k++)
sum[k]=(sum[k]+1ll*val[j][k]*b[j])%MOD;
// for(int k=0;k<=n;k++) printf("%d%c",sum[k]," \n"[k==n]);
prd[0]=1;
for(int x=-n>>1;x<=(n>>1);x++){
for(int i=n+1;i;i--)
prd[i]=(0ll+prd[i-1]+1ll*prd[i]*x%MOD+MOD)%MOD;
prd[0]=1ll*prd[0]*(x+MOD)%MOD;
}
// for(int i=0;i<=n+1;i++) printf("%d%c",prd[i]," \n"[i==n+1]);
for(int v=-n>>1;v<=(n>>1);v++){
memset(dv,0,sizeof(dv));
for(int i=n;~i;i--)
dv[i]=(0ll+prd[i+1]-1ll*(MOD-v)*dv[i+1]%MOD+MOD)%MOD;
int mul=1;
for(int x=-n>>1;x<=(n>>1);x++) if(v^x)
mul=1ll*mul*getinv(v-x)%MOD;
mul=1ll*mul*sum[v+(n>>1)]%MOD;
// printf("%d %d\n",v,mul);
// for(int i=0;i<=n;i++) printf("%d%c",dv[i]," \n"[i==n]);
for(int i=0;i<=n;i++) ss[i]=(ss[i]+1ll*dv[i]*mul)%MOD;
} for(int i=1;i<=n;i++) printf("%d%c",ss[i]," \n"[i==n]);
return 0;
}
/*
2
1 2 3 4
0 1 2 3
*/
NFLSOJ 1072 - 【2021 六校联合训练 NOIP #1】异或(FWT+插值)的更多相关文章
- NFLSOJ 1060 - 【2021 六校联合训练 NOI #40】白玉楼今天的饭(子集 ln)
由于 NFLSOJ 题面上啥也没有就把题意贴这儿了( 没事儿,反正是上赛季的题,你们非六校学生看了就看了,况且看了你们也没地方交就是了 题意: 给你一张 \(n\) 个点 \(m\) 条边的图 \(G ...
- 题解 nflsoj553 【六校联合训练 省选 #10】飞
题目链接 我们称"简要题意"给出的三个要求分别为"条件1","条件2","条件3". 条件3长得比较丑,考虑转化一下.把 ...
- 题解 nflsoj550 【六校联合训练 省选 #9】序列
题目链接 以下把值域(题面里的\(lim\))记做\(m\). 考虑求\(k\)的答案.考虑每个位置对答案的贡献,枚举位置\(i\),再枚举\(a[i]\)的值\(x\).设: \[ F(k)=\su ...
- 题解 nflsoj489 【六校联合训练 CSP #15】小D与随机
题目链接 考虑枚举好点的集合.此时要考虑的问题是如何填入\(1\sim n\)这些数使得恰好我们枚举到的这些点是好点,即:求出有多少种合法的填数方案. \(1\)号点一定是好点.那么除\(1\)号点外 ...
- HDU 5358(2015多校联合训练赛第六场1006) First One (区间合并+常数优化)
pid=5358">HDU 5358 题意: 求∑i=1n∑j=in(⌊log2S(i,j)⌋+1)∗(i+j). 思路: S(i,j) < 10^10 & ...
- 2017多校联合训练2—HDU6054--Is Derek lying?(思维题)
Is Derek lying? Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- 2017ACM暑期多校联合训练 - Team 7 1010 HDU 6129 Just do it (找规律)
题目链接 Problem Description There is a nonnegative integer sequence a1...n of length n. HazelFan wants ...
- 2016多校联合训练4 F - Substring 后缀数组
Description ?? is practicing his program skill, and now he is given a string, he has to calculate th ...
- 2014 多校联合训练赛6 Fighting the Landlords
本场比赛的三个水题之一,题意是两个玩家每人都持有一手牌,问第一个玩家是否有一种出牌方法使得在第一回和对方无牌可出.直接模拟即可,注意一次出完的情况,一开始没主意,wa了一发. #include< ...
随机推荐
- 【数据结构与算法Python版学习笔记】树——树的遍历 Tree Traversals
遍历方式 前序遍历 在前序遍历中,先访问根节点,然后递归地前序遍历左子树,最后递归地前序遍历右子树. 中序遍历 在中序遍历中,先递归地中序遍历左子树,然后访问根节点,最后递归地中序遍历右子树. 后序遍 ...
- Coursera Deep Learning笔记 序列模型(二)NLP & Word Embeddings(自然语言处理与词嵌入)
参考 1. Word Representation 之前介绍用词汇表表示单词,使用one-hot 向量表示词,缺点:它使每个词孤立起来,使得算法对相关词的泛化能力不强. 从上图可以看出相似的单词分布距 ...
- Redis:学习笔记-04
Redis:学习笔记-04 该部分内容,参考了 bilibili 上讲解 Redis 中,观看数最多的课程 Redis最新超详细版教程通俗易懂,来自 UP主 遇见狂神说 10. Redis主从复制 1 ...
- 从零开始的Spring Session(一)
Session和Cookie这两个概念,在学习java web开发之初,大多数人就已经接触过了.最近在研究跨域单点登录的实现时,发现对于Session和Cookie的了解,并不是很深入,所以打算写两篇 ...
- Alpha阶段发布声明
发布声明 Alpha 1.Alpha版本功能说明 功能列表和详情图 模块 功能 展示 首页 查看首页博文,搜索博文,可供未登录用户使用 动态 查看推荐动态给未登录用户使用,登录用户可以查看关注动态.我 ...
- 前端大牛带你了解JavaScript 函数式编程
前言 函数式编程在前端已经成为了一个非常热门的话题.在最近几年里,我们看到非常多的应用程序代码库里大量使用着函数式编程思想. 本文将略去那些晦涩难懂的概念介绍,重点展示在 JavaScript 中到底 ...
- CODING —— 云原生时代的研发工具领跑者
本文为 CODING 创始人兼 CEO 张海龙在腾讯云 CIF 工程效能峰会上所做的分享. 文末可前往峰会官网,观看回放并下载 PPT. 大家上午好,很高兴能有机会与大家分享 CODING 最近的一些 ...
- 微服务(五)nacos配置管理
1 统一配置管理 1.1 nacos中添加配置文件 注意:项目的核心配置,需要热更新的配置才有放到nacos管理的必要.基本不会变更的一些配置还是保存在微服务本地比较好. 1.2 从微服务拉取配置 微 ...
- linux基本命令二
组管理与权限管理 文件/目录所有者 修改文件所有者 chown 用户名 文件名 创建文件所在组 groupadd 修改文件所在组 chgrp 组名 文件名 其他组:除文件的所有者和所在组的用 ...
- 基于eNSP的NAT/NAPT协议仿真实践
一. 基本原理 eNSP(Enterprise Network Simulation Platform)是一款由华为提供的.可扩展的.图形化 操作的网络仿真工具平台,主要对企业网络路由器.交换机进行软 ...