NFLSOJ 1072 - 【2021 六校联合训练 NOIP #1】异或(FWT+插值)
一道非常不错的 FWT+插值的题 %%%%%%%%%%%%
还是那句话,反正非六校的看不到题对吧(((
方便起见在下文中设 \(n=2^d\)。
首先很明显的一点是这题涉及两个维度:异或和与选出的元素的个数。因此考虑像子集卷积那样建立一个二元生成函数表示这个东西,具体来说我们定义一个幂级数 \(F\) 形如 \(\sum\limits_{n\ge 0}\sum\limits_{m\ge 0}f_{n,m}x^ny^m\),并定义两个幂级数 \(F,G\) 的乘法得到的幂级数 \(H\) 满足 \(H_{i,j}=\sum\limits_{p\oplus q=i}\sum\limits_{r+s=j}F_{p,r}G_{q,s}\),那么这样我们相当于将所有 \(F_i(x,y)=1+a_ix^{i}y\) 乘起来,具体来说,设 \(G=\prod\limits_{i=0}^{n-1}1+a_ix^iy\),那么 \(res_i=\sum\limits_{j=0}^{n-1}[x^jy^i]G·b_j\),或者如果我们将答案的生成函数视作一个整体 \(R(x)\),那么 \(R(x)=\sum\limits_{j=0}^{n-1}[x^j]G·b_j\)。
考虑怎么求解 \(G\),按照子集卷积的套路我们考虑定某个东西为主元,在这题中我们考虑定 \(x\) 为主元,那么所有集合幂级数 \(F\) 都可以写成 \(\sum\limits_{i=0}^{n-1}F_i(y)x^i\),其中 \(F_i(y)\) 为某个关于 \(y\) 的多项式。这样一来两个幂级数做乘法则相当于对两个以形式幂级数为系数的集合幂级数做 xor 卷积,因此考虑将每个集合幂级数都 FWTxor 一遍,对应项相乘再 IFWTxor 回去即可得到上文中所说的 \(G\)。具体来说,显然 \(\text{FWT}(F_i(x,y))=\sum\limits_{j=0}^{n-1}(1+(-1)^{\text{builtin\_popcount}(i\&j)}a_iy)·x^j\),因此对应项相乘就有 \(\text{FWT}(G)=\sum\limits_{j=0}^{n-1}(\prod\limits_{i=0}^{n-1}(1+(-1)^{\text{builtin\_popcount}(i\&j)}a_iy))·x^j\),再 IFWTxor 回去即可算出真正的 \(G\),进而求出答案。
但是这样暴力操作复杂度还是会出问题,考虑优化。首先注意到 IFWTxor 是个线性变换,因此我们考虑不将 IFWTxor 作用与 \(\text{FWT}(G)\),instead 我们将其作用于 \(b\),也就是说答案的多项式 \(R(x)\) 可以写成 \(\sum\limits_{j=0}^{n-1}[x^j]G·b'_j\),其中 \(b’=\text{IFWT}(b)\),即
\]
考虑怎么求解后面那个东西,我们考虑用类似于 FWTxor 的东西求解。考虑分治,具体来说当我们求一排这样的多项式的乘积时候将序列分成左右两部分 \(F_1(x),F_2(x)\),那么合并时候,对于所有 \(i\in[0,\dfrac{n}{2})\),仿照 FWTxor 的套路则有 \(F_i(x)=F_{1,i}(x)F_{2,i}(x),F_{i+n/2}(x)=F_{1,i}(x)F_{2,i}(-x)\),如果直接莽个 MTT 上去复杂度是 \(d^24^d\) 的,并且自带大常数,无法通过,不过注意到最后答案序列也是一个 \(n\) 次多项式,因此考虑插值。具体来说,我们使用上述方法求出以上 \(n\) 个多项式在 \(-\dfrac{n}{2},-\dfrac{n}{2}+1,\cdots,0,\cdots,\dfrac{n}{2}-1,\dfrac{n}{2}\) 处的点值,这样可以在 \(\mathcal O(n^2)\) 时间内计算出 \(R(x)\) 在 \(-\dfrac{n}{2},-\dfrac{n}{2}+1,\cdots,0,\cdots,\dfrac{n}{2}-1,\dfrac{n}{2}\),再一遍拉格朗日插值即可得到 \(R(x)\) 的系数。
时间复杂度 \(4^d·d\)
const int MAXN=2052;
const int MOD=1e9+7;
const int INV2=5e8+4;
int n,d,a[MAXN+5],b[MAXN+5],sum[MAXN+5];
int val[MAXN+5][MAXN+5],tmp[MAXN+5][MAXN+5];
void FWTxor(int *a,int len,int type){
for(int i=2;i<=len;i<<=1)
for(int j=0;j<len;j+=i)
for(int k=0;k<(i>>1);k++){
int X=a[j+k],Y=a[(i>>1)+j+k];
a[j+k]=1ll*type*(X+Y)%MOD;
a[(i>>1)+j+k]=1ll*type*(X-Y+MOD)%MOD;
}
}
int prd[MAXN+5],dv[MAXN+5];
int inv[MAXN+5],ss[MAXN+5];
int getinv(int x){return (x<0)?(MOD-inv[-x]):inv[x];}
void init_fac(int n){
for(int i=(inv[0]=inv[1]=1)+1;i<=n;i++) inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
}
int main(){
scanf("%d",&d);n=1<<d;init_fac(MAXN);
for(int i=0;i<n;i++) scanf("%d",&a[i]);
for(int i=0;i<n;i++) scanf("%d",&b[i]);
FWTxor(b,n,INV2);
for(int i=0;i<n;i++) for(int j=-n>>1;j<=(n>>1);j++)
val[i][j+(n>>1)]=(1+1ll*a[i]*j%MOD+MOD)%MOD;
for(int i=2;i<=n;i<<=1){
memset(tmp,0,sizeof(tmp));
for(int j=0;j<n;j+=i)
for(int k=0;k<(i>>1);k++)
for(int x=-n>>1;x<=(n>>1);x++){
tmp[j+k][x+(n>>1)]=1ll*val[j+k][x+(n>>1)]*val[(i>>1)+j+k][x+(n>>1)]%MOD;
tmp[(i>>1)+j+k][x+(n>>1)]=1ll*val[j+k][x+(n>>1)]*val[(i>>1)+j+k][-x+(n>>1)]%MOD;
}
for(int j=0;j<n;j++) for(int k=0;k<=n;k++)
val[j][k]=tmp[j][k];
}
for(int j=0;j<n;j++) for(int k=0;k<=n;k++)
sum[k]=(sum[k]+1ll*val[j][k]*b[j])%MOD;
// for(int k=0;k<=n;k++) printf("%d%c",sum[k]," \n"[k==n]);
prd[0]=1;
for(int x=-n>>1;x<=(n>>1);x++){
for(int i=n+1;i;i--)
prd[i]=(0ll+prd[i-1]+1ll*prd[i]*x%MOD+MOD)%MOD;
prd[0]=1ll*prd[0]*(x+MOD)%MOD;
}
// for(int i=0;i<=n+1;i++) printf("%d%c",prd[i]," \n"[i==n+1]);
for(int v=-n>>1;v<=(n>>1);v++){
memset(dv,0,sizeof(dv));
for(int i=n;~i;i--)
dv[i]=(0ll+prd[i+1]-1ll*(MOD-v)*dv[i+1]%MOD+MOD)%MOD;
int mul=1;
for(int x=-n>>1;x<=(n>>1);x++) if(v^x)
mul=1ll*mul*getinv(v-x)%MOD;
mul=1ll*mul*sum[v+(n>>1)]%MOD;
// printf("%d %d\n",v,mul);
// for(int i=0;i<=n;i++) printf("%d%c",dv[i]," \n"[i==n]);
for(int i=0;i<=n;i++) ss[i]=(ss[i]+1ll*dv[i]*mul)%MOD;
} for(int i=1;i<=n;i++) printf("%d%c",ss[i]," \n"[i==n]);
return 0;
}
/*
2
1 2 3 4
0 1 2 3
*/
NFLSOJ 1072 - 【2021 六校联合训练 NOIP #1】异或(FWT+插值)的更多相关文章
- NFLSOJ 1060 - 【2021 六校联合训练 NOI #40】白玉楼今天的饭(子集 ln)
由于 NFLSOJ 题面上啥也没有就把题意贴这儿了( 没事儿,反正是上赛季的题,你们非六校学生看了就看了,况且看了你们也没地方交就是了 题意: 给你一张 \(n\) 个点 \(m\) 条边的图 \(G ...
- 题解 nflsoj553 【六校联合训练 省选 #10】飞
题目链接 我们称"简要题意"给出的三个要求分别为"条件1","条件2","条件3". 条件3长得比较丑,考虑转化一下.把 ...
- 题解 nflsoj550 【六校联合训练 省选 #9】序列
题目链接 以下把值域(题面里的\(lim\))记做\(m\). 考虑求\(k\)的答案.考虑每个位置对答案的贡献,枚举位置\(i\),再枚举\(a[i]\)的值\(x\).设: \[ F(k)=\su ...
- 题解 nflsoj489 【六校联合训练 CSP #15】小D与随机
题目链接 考虑枚举好点的集合.此时要考虑的问题是如何填入\(1\sim n\)这些数使得恰好我们枚举到的这些点是好点,即:求出有多少种合法的填数方案. \(1\)号点一定是好点.那么除\(1\)号点外 ...
- HDU 5358(2015多校联合训练赛第六场1006) First One (区间合并+常数优化)
pid=5358">HDU 5358 题意: 求∑i=1n∑j=in(⌊log2S(i,j)⌋+1)∗(i+j). 思路: S(i,j) < 10^10 & ...
- 2017多校联合训练2—HDU6054--Is Derek lying?(思维题)
Is Derek lying? Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- 2017ACM暑期多校联合训练 - Team 7 1010 HDU 6129 Just do it (找规律)
题目链接 Problem Description There is a nonnegative integer sequence a1...n of length n. HazelFan wants ...
- 2016多校联合训练4 F - Substring 后缀数组
Description ?? is practicing his program skill, and now he is given a string, he has to calculate th ...
- 2014 多校联合训练赛6 Fighting the Landlords
本场比赛的三个水题之一,题意是两个玩家每人都持有一手牌,问第一个玩家是否有一种出牌方法使得在第一回和对方无牌可出.直接模拟即可,注意一次出完的情况,一开始没主意,wa了一发. #include< ...
随机推荐
- 面试题 08.12. N皇后
题目 设计一种算法,打印 N 皇后在 N × N 棋盘上的各种摆法,其中每个皇后都不同行.不同列,也不在对角线上.这里的"对角线"指的是所有的对角线,不只是平分整个棋盘的那两条对角 ...
- 使用Servlet前Tomcat介绍
虚拟目录的映射方式:让tomcat服务器自动映射tomcat服务器会自动管理webapps目录下的所有web应用,并把它映射成虚似目录.换句话说,tomcat服务器webapps目录中的web应用,外 ...
- Go语言核心36讲(Go语言进阶技术七)--学习笔记
13 | 结构体及其方法的使用法门 我们都知道,结构体类型表示的是实实在在的数据结构.一个结构体类型可以包含若干个字段,每个字段通常都需要有确切的名字和类型. 前导内容:结构体类型基础知识 当然了,结 ...
- the Agiles Scrum Meeting 5
会议时间:2020.4.13 20:00 1.每个人的工作 今天已完成的工作 增量组:完成了增量开发的基础工作,初步完成了自动评测机制 issues:增量组:准备评测机制,增加仓库自动创建和管理 完善 ...
- 电脑cmd命令快速查看连接过的WIFI密码信息
只是突然发现,好奇心作怪,试了一下,妈妈再也不用担心我忘记家里的wifi密码了 1.直接打开"运行"(win键+R) 2.输入CMD 确定 3.输入下面cmd命令.鼠标粘贴 for ...
- 洛谷 P2221 [HAOI2012]高速公路
链接: P2221 题意: 有 \(n(1\leq n\leq 10^5)\) 个点,从第 \(i(1\leq i< n)\) 个点向第 \(i+1\) 个点连有边.最初所有边长 \(v_i\) ...
- cf13B Letter A(分类+简单计算几何,,)
题意: 给三个线段(每个线段的两个端点的坐标),问这三个线段能否组成字母A. 组成字母A的条件: 1.两个线段有公共端点. 2.这两个线段夹角小于等于90度. 3.第三个线段的两个端点分别在这两个线段 ...
- lamp 架构的理解
1,lamp架构下的求情过程如下: 2,httpd服务器连接php服务器的三种方式 3,php和mysql的连接
- Kafka 消费迟滞监控工具 Burrow
Kafka 官方对于自身的 LAG 监控并没有太好的方法,虽然Kafka broker 自带有 kafka-topic.sh, kafka-consumer-groups.sh, kafka-cons ...
- JMeter跨线程组保持登录(多线程组共享cookie)
使用__setProperty设置全局变量: 1.jmeter中创建一个登录请求,然后执行,察看结果树-->查看返回cookie信息,我的是在Response data中的 Response h ...