[bzoj4777]Switch Grass
结论:最短路径一定是单独的一条边且在最小生成树上,可以用反证法证明。
那么求出最小生成树,对于每一个点建立一棵权值线段树,再对每一个权值线段树上的叶子节点开一个multiset,维护所有儿子中该种颜色的权值(普通节点仍维护区间最小值),答案也需要用multiset维护。
1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 #define mid (l+r>>1)
5 multiset<int>ans,s[N*3];
6 struct ji{
7 int nex,to,len;
8 }edge[N<<1];
9 struct ji2{
10 int x,y,z;
11 bool operator < (const ji2 &k)const{
12 return z<k.z;
13 }
14 }a[N];
15 int E,V,V2,n,m,q,head[N],f[N],r[N],sh[N],id[N*29],ls[N*29],rs[N*29],tr[N*29],c[N];
16 int find(int k){
17 if (k==f[k])return k;
18 return f[k]=find(f[k]);
19 }
20 void add(int x,int y,int z){
21 edge[E].nex=head[x];
22 edge[E].to=y;
23 edge[E].len=z;
24 head[x]=E++;
25 }
26 void update(int &k,int l,int r,int x,int y,int p,int c){
27 if ((!k)&&(y==-1))return;
28 if (!k)k=++V;
29 if (l==r){
30 if (!id[k])id[k]=++V2;
31 if (y!=-1)
32 if (p==1)s[id[k]].insert(y);
33 else s[id[k]].erase(s[id[k]].find(y));
34 if ((c==x)||(!s[id[k]].size()))tr[k]=0x3f3f3f3f;
35 else tr[k]=(*s[id[k]].begin());
36 return;
37 }
38 if (x<=mid)update(ls[k],l,mid,x,y,p,c);
39 else update(rs[k],mid+1,r,x,y,p,c);
40 tr[k]=min(tr[ls[k]],tr[rs[k]]);
41 }
42 void dfs(int k,int fa){
43 f[k]=fa;
44 for(int i=head[k];i!=-1;i=edge[i].nex)
45 if (edge[i].to!=fa){
46 dfs(edge[i].to,k);
47 sh[edge[i].to]=edge[i].len;
48 update(r[k],1,n,c[edge[i].to],edge[i].len,1,c[k]);
49 }
50 ans.insert(tr[r[k]]);
51 }
52 int main(){
53 scanf("%d%d%*d%d",&n,&m,&q);
54 memset(head,-1,sizeof(head));
55 tr[0]=0x3f3f3f3f;
56 for(int i=1;i<=m;i++)scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].z);
57 sort(a+1,a+m+1);
58 for(int i=1;i<=n;i++)f[i]=i;
59 for(int i=1;i<=m;i++)
60 if (find(a[i].x)!=find(a[i].y)){
61 f[find(a[i].x)]=find(a[i].y);
62 add(a[i].x,a[i].y,a[i].z);
63 add(a[i].y,a[i].x,a[i].z);
64 }
65 for(int i=1;i<=n;i++)scanf("%d",&c[i]);
66 dfs(1,0);
67 int x,y;
68 for(int i=1;i<=q;i++){
69 scanf("%d%d",&x,&y);
70 if (f[x]){
71 ans.erase(ans.find(tr[r[f[x]]]));
72 update(r[f[x]],1,n,c[x],sh[x],-1,c[f[x]]);
73 update(r[f[x]],1,n,y,sh[x],1,c[f[x]]);
74 ans.insert(tr[r[f[x]]]);
75 }
76 ans.erase(ans.find(tr[r[x]]));
77 update(r[x],1,n,c[x],-1,1,y);
78 c[x]=y;
79 update(r[x],1,n,c[x],-1,1,c[x]);
80 ans.insert(tr[r[x]]);
81 printf("%d\n",(*ans.begin()));
82 }
83 }
[bzoj4777]Switch Grass的更多相关文章
- BZOJ 4777: [Usaco2017 Open]Switch Grass
4777: [Usaco2017 Open]Switch Grass Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 46 Solved: 10[Su ...
- BZOJ4777 [Usaco2017 Open]Switch Grass[最小生成树+权值线段树套平衡树]
标题解法是吓人的. 图上修改询问,不好用数据结构操作.尝试转化为树来维护.发现(不要问怎么发现的)最小生成树在这里比较行得通,因为最近异色点对一定是相邻的(很好想),所以只要看最短的一条两端连着异色点 ...
- Luogu 3665 [USACO17OPEN]Switch Grass 切换牧草
BZOJ 4777 被权限了. 这道题的做法看上去不难,但是感觉自己yy不出来. 首先是两个结论: 1.答案一定是连接着两个异色点的一条边. 2.答案一定在最小生成树上. 感觉看到了之后都比较显然,自 ...
- BZOJ 4777 Usaco2017 Open Switch Grass Kruskal+替罪羊树+权值线段树
这道题首先可以看出答案一定是一条边,而且答案一定在最小生成树上,那么我们就可以在这个最小生成树上维护他与异色儿子的边最小值,所以我们就可以已通过Kruskal和一棵平衡树来解决,时间复杂度是O(n*l ...
- P3665 [USACO17OPEN]Switch Grass
题目描述 N个点M条边的无向图,每个点有一个初始颜色,每次改变一个点的颜色,求改变后整张图上颜色不同的点之间的距离最小值. 思路 考虑整张图的距离最小值一定是一条边,而不可能是一条路径,那么显然这条边 ...
- USACO 2017 US Open
只会做T1,FallDream T2 n^2暴力AC,太强啦. T1.Modern Art 题目大意:有一个n*n的矩阵,一开始都是0,你有n^2种颜色,编号1到n^2,每次可以选出一种颜色涂满一个子 ...
- 游戏编程算法与技巧 Game Programming Algorithms and Techniques (Sanjay Madhav 著)
http://gamealgorithms.net 第1章 游戏编程概述 (已看) 第2章 2D图形 (已看) 第3章 游戏中的线性代数 (已看) 第4章 3D图形 (已看) 第5章 游戏输入 (已看 ...
- Partition:分区切换(Switch)
在SQL Server中,对超级大表做数据归档,使用select和delete命令是十分耗费CPU时间和Disk空间的,SQL Server必须记录相应数量的事务日志,而使用switch操作归档分区表 ...
- java中if和switch哪个效率快
首先要看一个问题,if 语句适用范围比较广,只要是 boolean 表达式都可以用 if 判断:而 switch 只能对基本类型进行数值比较.两者的可比性就仅限在两个基本类型比较的范围内.说到基本类型 ...
随机推荐
- Linux下关于用户账户的几个文件解析
Linux下关于用户账户的几个文件解析 Linux是一个多用户系统,但是对于一个多用户共存的系统中,当然不能够出现用户相互越权等一系列的安全问题,所以如何正确的管理账户成为了Linux系统中至关重要的 ...
- SQL Server 数据库单用户模式处理
在还原数据库bak备份文件时,由于某种原因(具体何种原因在此不进行分析)导致数据库还原后处于单用户模式,如下图: 单个用户模式导致,数据库无法打开,只能通过脚本去查询数据库内的表,然后进行查询数据,极 ...
- python socket 基本使用
socket通常也叫做"套接字",用于连接server client,是一个通信链的句柄,应用程序通常通过套接字向网络发出请求或应答网络请求. 就像python 处理file一样: ...
- SpringBoot打包到docker(idea+传统方式)
作者:故事我忘了¢个人微信公众号:程序猿的月光宝盒 目录 1. 方式1.通过idea 远程发布 1.1 修改docker.service文件 1. 进入服务器 2. 修改ExecStart行为下面内容 ...
- 【UE4 C++】编程子系统 Subsystem
概述 定义 Subsystems 是一套可以定义.自动实例化和释放的类的框架.可以将其理解为 GamePlay 级别的 Component 不支持网络赋值 4.22开始引入,4.24完善.(可以移植源 ...
- Scrum Meeting 10
第10次例会报告 日期:2021年05月30日 会议主要内容概述: 目前组员均无暇软工,进展较慢. 一.进度情况 我们采用日报的形式记录每个人的具体进度,链接Home · Wiki,如下记录仅为保证公 ...
- [对对子队]会议记录5.21(Scrum Meeting8)
今天已完成的工作 吴昭邦 工作内容:调整快进按钮 相关issue:优化流水线加入物品的动画 相关签入:feat: 快进图标更换,更改第四关材料位置 朱俊豪 工作内容:调整场景高度和视角 ...
- [对对子队]会议记录4.21(Scrum Meeting12)
今天已完成的工作 吴昭邦 工作内容:基本实现改变顺序合成 相关issue:实现流水线合成系统的逻辑 相关签入:4.21签入1 梁河览 工作内容:修改设置界面bug 相关签入:4.2 ...
- Noip模拟80 2021.10.18
预计得分:5 实际得分:140?????????????? T1 邻面合并 我考场上没切掉的大水题....(证明我旁边的cty切掉了,并觉得很水) 然而贪心拿了六十,离谱,成功做到上一篇博客说的有勇气 ...
- 零基础入门该如何实现C 语言面向对象编程(很有帮助)
零基础如果更快更好的入门C语言,如何在枯燥的学习中找到属于自己的兴趣,如果把学习当成一种事务性的那以后的学习将会很难有更深入的进步,如果带着乐趣来完成学习那将越学越有意思这样才会让你有想要更深入学习的 ...