Suppose a bank has N windows open for service. There is a yellow line in front of the windows which devides the waiting area into two parts. The rules for the customers to wait in line are:

  • The space inside the yellow line in front of each window is enough to contain a line with M customers. Hence when all the N lines are full, all the customers after (and including) the (st one will have to wait in a line behind the yellow line.
  • Each customer will choose the shortest line to wait in when crossing the yellow line. If there are two or more lines with the same length, the customer will always choose the window with the smallest number.
  • Customer​i​​ will take T​i​​ minutes to have his/her transaction processed.
  • The first N customers are assumed to be served at 8:00am.

Now given the processing time of each customer, you are supposed to tell the exact time at which a customer has his/her business done.

For example, suppose that a bank has 2 windows and each window may have 2 customers waiting inside the yellow line. There are 5 customers waiting with transactions taking 1, 2, 6, 4 and 3 minutes, respectively. At 08:00 in the morning, customer​1​​ is served at window​1​​ while customer​2​​ is served at window​2​​. Customer​3​​ will wait in front of window​1​​ and customer​4​​ will wait in front of window​2​​. Customer​5​​ will wait behind the yellow line.

At 08:01, customer​1​​ is done and customer​5​​ enters the line in front of window​1​​ since that line seems shorter now. Customer​2​​ will leave at 08:02, customer​4​​ at 08:06, customer​3​​ at 08:07, and finally customer​5​​ at 08:10.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 4 positive integers: N (≤, number of windows), M (≤, the maximum capacity of each line inside the yellow line), K (≤, number of customers), and Q (≤, number of customer queries).

The next line contains K positive integers, which are the processing time of the K customers.

The last line contains Q positive integers, which represent the customers who are asking about the time they can have their transactions done. The customers are numbered from 1 to K.

Output Specification:

For each of the Q customers, print in one line the time at which his/her transaction is finished, in the format HH:MM where HH is in [08, 17] and MM is in [00, 59]. Note that since the bank is closed everyday after 17:00, for those customers who cannot be served before 17:00, you must output Sorry instead.

Sample Input:

2 2 7 5
1 2 6 4 3 534 2
3 4 5 6 7
 

Sample Output:

08:07
08:06
08:10
17:00
Sorry

题意:

N个窗口每个窗口最多容纳M个人排队,余下的人在大厅等候,当一个customer办理完成之后,等候的人到有空位的窗口去办理业务,如果同时有两个空位,则到编号小的空位去。做这道题的时候让我想到了,操作系统中的作业调度,这种情况符合先来先服务(FIFO)的原则。自然想到用队列来解决问题。要是有更多的测试数据就好了。

Code:

#include<iostream>
#include<vector>
#include<queue>
#include<map>
#include<iomanip>
#include<climits> using namespace std; typedef struct Customer {
int num;
int startTime;
int doneTime;
}cus; int main() {
int N, M, K, Q;
cin >> N >> M >> K >> Q; vector<queue<cus>> v(N);
vector<int> time(N, 0);
map<int, cus> m; int i, t, j = 1, flag = 0;
for (i = 0; i < N*M; ++i) {
cin >> t;
v[i%N].push({i+1, time[i%N], time[i%N]+t});
m.insert({i+1, {i+1, time[i%N], time[i%N]+t}});
time[i%N] += t;
}
for (; i < K; ++i) {
cin >> t;
flag = 0; int endTime = INT_MAX, tag;
for (int k = 0; k < N; ++k) {
if (v[k].size() < M && v[k].front().doneTime < endTime) {
tag = k;
flag = 1;
}
} if (flag) {
v[tag].push({i+1, time[tag], time[tag]+t});
m.insert({i+1,{i+1, time[tag], time[tag]+t}});
time[tag] += t;
continue;
} for (; j < 541; ++j) {
for (int k = 0; k < N; ++k) {
if (v[k].front().doneTime == j) {
v[k].pop();
v[k].push({i+1, time[k], time[k]+t});
m.insert({i+1,{i+1, time[k], time[k]+t}});
time[k] += t;
flag = 1;
}
}
if (flag) { --j; break; }
}
} for (int i = 0; i < Q; ++i) {
cin >> t;
int mins, hours;
mins = m[t].doneTime % 60;
hours = m[t].doneTime / 60;
if (m[t].startTime >= 540) cout << "Sorry" << endl;
else cout << setfill('0') << setw(2) << 8+hours << ":" << setfill('0') << setw(2) << mins << endl;
} return 0;
}

  

  

搞了半天就过了一组数据,挺失落的。


看了一下别人的博客,发现只要开始时间在17:00之前,不管结束时间是多少,都应该将业务办理完,改了一下代码,又通过了一组数据。

1014 Waiting in Line的更多相关文章

  1. PAT甲级1014. Waiting in Line

    PAT甲级1014. Waiting in Line 题意: 假设银行有N个窗口可以开放服务.窗前有一条黄线,将等候区分为两部分.客户要排队的规则是: 每个窗口前面的黄线内的空间足以包含与M个客户的一 ...

  2. PAT 1014 Waiting in Line (模拟)

    1014. Waiting in Line (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Suppo ...

  3. PAT 甲级 1014 Waiting in Line (30 分)(queue的使用,模拟题,有个大坑)

    1014 Waiting in Line (30 分)   Suppose a bank has N windows open for service. There is a yellow line ...

  4. 1014 Waiting in Line (30分)

    1014 Waiting in Line (30分)   Suppose a bank has N windows open for service. There is a yellow line i ...

  5. PTA (Advanced Level) 1014 Waiting in Line

    Waiting in Line Suppose a bank has N windows open for service. There is a yellow line in front of th ...

  6. PAT A 1014. Waiting in Line (30)【队列模拟】

    题目:https://www.patest.cn/contests/pat-a-practise/1014 思路: 直接模拟类的题. 线内的各个窗口各为一个队,线外的为一个,按时间模拟出队.入队. 注 ...

  7. 1014. Waiting in Line (30)

    Suppose a bank has N windows open for service. There is a yellow line in front of the windows which ...

  8. PAT 1014. Waiting in Line

    Suppose a bank has N windows open for service.  There is a yellow line in front of the windows which ...

  9. 1014 Waiting in Line (30)(30 point(s))

    problem Suppose a bank has N windows open for service. There is a yellow line in front of the window ...

  10. 1014 Waiting in Line (30)(30 分)

    Suppose a bank has N windows open for service. There is a yellow line in front of the windows which ...

随机推荐

  1. 看完我的笔记不懂也会懂----Node.js

    Node.js 学习 - 命令行窗口 - 进程与线程 - ECMAScript的缺点 - Node模块化 - Node中的全局对象 - 包 package - NPM包管理器 (Node Packag ...

  2. RocketMQ(4.8.0)——Broker 的关机恢复机制

    Broker 的关机恢复机制 一.Broker关机恢复概述 Broker关机恢复是指恢复 CommitLog.Consume Queue.Index File 等数据文件.Broker 关机分为正常调 ...

  3. 剑指 Offer 64. 求1+2+…+n + 递归

    剑指 Offer 64. 求1+2+-+n Offer_64 题目描述 题解分析 使用&&逻辑短路规则来终止循环 package com.walegarrett.offer; /** ...

  4. POJ-2516(最小费用最大流+MCMF算法)

    Minimum Cost POJ-2516 题意就是有n个商家,有m个供货商,然后有k种商品,题目求的是满足商家的最小花费供货方式. 对于每个种类的商品k,建立一个超级源点和一个超级汇点.每个商家和源 ...

  5. uniCloud的简单使用 增删改查

    新建一个uni-app 项目 启动云开发 选择想要的云服务 在次之前先完成uniCloud 的实名认证 https://unicloud.dcloud.net.cn 有在Web控制台创建过云服务空间就 ...

  6. Linux给防火墙开外网端口

    /sbin/iptables -I INPUT -p tcp --dport 80 -j ACCEPT 80:外网端口

  7. teprunner测试平台部署到Linux系统Docker

    本文是一篇过渡,在进行用例管理模块开发之前,有必要把入门篇开发完成的代码部署到Linux系统Docker中,把部署流程走一遍,这个过程对后端设计有决定性影响. 本地运行 通过在Vue项目执行npm r ...

  8. for-in 语句

    for-in 语句循环专门用于遍历范围,列表,元素和字典等可迭代对象. 循环中的变量的值受for-in循环控制,该变量将会在每次循环开始时自动被赋值,因此程序不应该在循环中对该变量进行赋值 for-i ...

  9. Python-生成器

    创建生成器 创建生成器需要两部步骤 定义一个包含yield语句的函数 调用第一步创建的函数得到生成器 def test(val,step): 2 print("函数开始执行") 3 ...

  10. Java基础知识-简明阐述双亲委派机制及作用

    1.双亲委派机制及作用 1.1 什么是双亲委派机制 当某个类加载器需要加载某个.class文件时,它首先把这个任务委托给他的上级类加载器,递归这个操作,如果上级的类加载器没有加载,自己才会去加载这个类 ...