v80.01 鸿蒙内核源码分析(内核态锁篇) | 如何实现快锁Futex(下) | 百篇博客分析OpenHarmony源码
百篇博客分析|本篇为:(内核态锁篇) | 如何实现快锁Futex(下)
进程通讯相关篇为:
- v26.08 鸿蒙内核源码分析(自旋锁) | 当立贞节牌坊的好同志
- v27.05 鸿蒙内核源码分析(互斥锁) | 同样是锁它却更丰满
- v28.04 鸿蒙内核源码分析(进程通讯) | 九种进程间通讯方式速揽
- v29.05 鸿蒙内核源码分析(信号量) | 谁在解决任务间的同步
- v30.07 鸿蒙内核源码分析(事件控制) | 多对多任务如何同步
- v33.03 鸿蒙内核源码分析(消息队列) | 进程间如何异步传递大数据
- v76.01 鸿蒙内核源码分析(共享内存) | 进程间最快通讯方式
- v77.02 鸿蒙内核源码分析(消息封装) | 剖析LiteIpc(上)进程通讯内容
- v78.01 鸿蒙内核源码分析(消息映射) | 剖析LiteIpc(下)进程通讯机制
- v79.01 鸿蒙内核源码分析(用户态锁) | 如何使用快锁Futex(上)
- v80.01 鸿蒙内核源码分析(内核态锁) | 如何实现快锁Futex(下)
本篇为快锁下篇,说清楚快锁在内核态的实现,解答以下问题,它们在上篇的末尾被提出来。
- 鸿蒙内核进程池默认上限是
64
个,除去两个内核进程外,剩下的都归属用户进程,理论上用户进程可以创建很多快锁,这些快锁可以用于进程间(共享快锁)也可以用于线程间(私有快锁),在快锁的生命周期中该如何保存 ? - 无锁时,前面已经有进程在申请锁时,如何处理好新等锁进程和旧等锁进程的关系 ?
- 释放锁时,需要唤醒已经在等锁的进程,唤醒的顺序由什么条件决定 ?
系列篇多次提过,线程在内核层面叫任务,在内核任务比进程重要得多,调度也好,竞争也罢,都是围绕任务展开的。竞争快锁是任务间的竞争,自然会和任务(task
)有紧密的联系,其在内核的表达也出现在了任务表达之中。
typedef struct { // 任务控制块
...
LOS_DL_LIST pendList; /**< Task pend node | 如果任务阻塞时就通过它挂到各种阻塞情况的链表上,比如OsTaskWait时 */
...
FutexNode futex; ///< 指明任务在等待哪把快锁,一次只等一锁,锁和任务的关系是(1:N)关系
} LosTaskCB;
对 任务 不清楚的请翻看系列相关篇,一定要搞懂,它是内核最重要的概念,甚至没有之一,搞不懂任务就一定搞不懂内核整体的运行机制。
快锁节点 | 内核表达
FutexNode
(快锁节点) 是快锁模块核心结构体,熟悉这块源码的钥匙。
typedef struct {
UINTPTR key; /* private:uvaddr | 私有锁,用虚拟地址 shared:paddr | 共享锁,用物理地址 */
UINT32 index; /* hash bucket index | 哈希桶索引 OsFutexKeyToIndex */
UINT32 pid; /* private:process id shared:OS_INVALID(-1) | 私有锁:进程ID , 共享锁为 -1 */
LOS_DL_LIST pendList; /* point to pendList in TCB struct | 指向 TCB 结构中的 pendList, 通过它找到任务*/
LOS_DL_LIST queueList; /* thread list blocked by this lock | 挂等待这把锁的任务,其实这里挂到是FutexNode.queueList , 通过 queueList 可以找到 pendList ,通过 pendList又可以找到真正的任务*/
LOS_DL_LIST futexList; /* point to the next FutexNode | 下一把快锁节点*/
} FutexNode;
解读
- 首先要明白 快锁 和 快锁节点 的区别,否则看内核代码一定会懵圈,内核并没有快锁这个结构体,
key
就是快锁,它们的关系是1:N
的关系 ,快锁分成了 私有锁 和 共享锁 两种类型。用key
表示唯一性。共享锁用物理地址 , 私有锁用虚拟地址。为什么要这么做呢 ?- 私有锁的意思是进程私有,作用于同一个进程的不同任务间, 因为任务是共享进程空间的, 所以可以用虚拟地址来表示进程内的唯一性 。 但两个不同的进程会出现两个虚拟地址一样的快锁。
- 共享锁的意思是进程共享,作用于不同进程的不同任务间,因为不同的进程都会有相同的虚拟地址范围, 所以不能用虚拟地址来表示唯一性 ,只能用物理地址。虚拟地址 : 物理地址 =
N: 1
,不清楚的请查看系列篇之内存映射相关篇。
index
内核使用哈希桶来检索快锁 ,index
和key
的关系通过哈希算法(FNV-1a
)来映射。注意会有同一个哈希桶中两个key
一样的锁,虽然它会以极低概率出现。快锁的内核实现代码部分,个人觉得可以优化的空间很大,应好好测试下这块 ,说不定会有意想不到的bug
: ) 。pid
指快锁节点进程归属,作用于私有锁。pendList
指向LosTaskCB.pendList
, 通过它去唤醒和挂起任务,但并没有在源码中看到指向动作,如有看到的请告诉站长(wx: rekaily
)。queueList
具有相同key
值的节点被queue_list
串联起来表示被同一把锁阻塞的任务队列,意思就是queueList
上面挂的都是等值为相同key
的快锁,并按任务的优先级排好序。任务优先级高的可以先获取快锁使用权。futexList
指向下一把快锁, 虽然挂的也是FutexNode
,但是意义不一样 ! 是指queueList
链表上的首个快锁节点,即不同key
的快锁。能理解吗 ? 好吧 ,我承认这里面有点绕 。
哈希桶 | 管理快锁
当用户态产生锁的竞争或释放需要进行相关线程的调度操作时,会触发Futex
系统调用进入内核,此时会将用户态锁的地址传入内核,并在内核的Futex
中以锁地址来区分用户态的每一把锁,因为用户态可用虚拟地址空间为1GiB
,为了便于查找、管理,内核Futex
采用哈希桶来存放用户态传入的锁。
哈希桶共有80
个,0~63
号桶用于存放私有锁(以虚拟地址进行哈希),64~79
号桶用于存放共享锁(以物理地址进行哈希),所有相同的 key
都掉进了同一个桶里。私有/共享属性通过用户态锁的初始化以及Futex
系统调用入参确定。
#define FUTEX_INDEX_PRIVATE_MAX 64 ///< 0~63号桶用于存放私有锁(以虚拟地址进行哈希),同一进程不同线程共享futex变量,表明变量在进程地址空间中的位置
///< 它告诉内核,这个futex是进程专有的,不可以与其他进程共享。它仅仅用作同一进程的线程间同步。
#define FUTEX_INDEX_SHARED_MAX 16 ///< 64~79号桶用于存放共享锁(以物理地址进行哈希),不同进程间通过文件共享futex变量,表明该变量在文件中的位置
#define FUTEX_INDEX_MAX (FUTEX_INDEX_PRIVATE_MAX + FUTEX_INDEX_SHARED_MAX) ///< 80个哈希桶
#define FUTEX_INDEX_SHARED_POS FUTEX_INDEX_PRIVATE_MAX ///< 共享锁开始位置
FutexHash g_futexHash[FUTEX_INDEX_MAX];///< 默认80个哈希桶
typedef struct {
LosMux listLock;///< 内核操作lockList的互斥锁
LOS_DL_LIST lockList;///< 用于挂载 FutexNode (Fast userspace mutex,用户态快速互斥锁)
} FutexHash;
下图来源于官方文档,基本能准确的描述管理方式,暂且使用此图(后续可能重画) , 有了这张图理解上面FutexNode
会更轻松
任务调度
- 无锁时就需要将当前任务挂起,可详细跟踪函数
OsFutexWaitTask
,无非就是根据任务的优先级调整queueList
futexList
queueList
这些链表上的位置/// 将当前任务挂入等待链表中
STATIC INT32 OsFutexWaitTask(const UINT32 *userVaddr, const UINT32 flags, const UINT32 val, const UINT32 timeOut)
{
INT32 futexRet;
UINT32 intSave, lockVal;
LosTaskCB *taskCB = NULL;
FutexNode *node = NULL;
UINTPTR futexKey = OsFutexFlagsToKey(userVaddr, flags);//通过地址和flags 找到 key
UINT32 index = OsFutexKeyToIndex(futexKey, flags);//通过key找到哈希桶
FutexHash *hashNode = &g_futexHash[index]; if (OsFutexLock(&hashNode->listLock)) {//操作快锁节点链表前先上互斥锁
return LOS_EINVAL;
}
//userVaddr必须是用户空间虚拟地址
if (LOS_ArchCopyFromUser(&lockVal, userVaddr, sizeof(UINT32))) {//将值拷贝到内核空间
PRINT_ERR("Futex wait param check failed! copy from user failed!\n");
futexRet = LOS_EINVAL;
goto EXIT_ERR;
} if (lockVal != val) {//对参数内部逻辑检查
futexRet = LOS_EBADF;
goto EXIT_ERR;
}
//注意第二个参数 FutexNode *node = NULL
if (OsFutexInsertTaskToHash(&taskCB, &node, futexKey, flags)) {// node = taskCB->futex
futexRet = LOS_NOK;
goto EXIT_ERR;
} SCHEDULER_LOCK(intSave);
OsTaskWaitSetPendMask(OS_TASK_WAIT_FUTEX, futexKey, timeOut);
OsSchedTaskWait(&(node->pendList), timeOut, FALSE);
OsSchedLock();
LOS_SpinUnlock(&g_taskSpin); futexRet = OsFutexUnlock(&hashNode->listLock);//
if (futexRet) {
OsSchedUnlock();
LOS_IntRestore(intSave);
goto EXIT_UNLOCK_ERR;
} LOS_SpinLock(&g_taskSpin);
OsSchedUnlock(); /*
* it will immediately do the scheduling, so there's no need to release the
* task spinlock. when this task's been rescheduled, it will be holding the spinlock.
*/
OsSchedResched(); if (taskCB->taskStatus & OS_TASK_STATUS_TIMEOUT) {
taskCB->taskStatus &= ~OS_TASK_STATUS_TIMEOUT;
SCHEDULER_UNLOCK(intSave);
return OsFutexDeleteTimeoutTaskNode(hashNode, node);
} SCHEDULER_UNLOCK(intSave);
return LOS_OK; EXIT_ERR:
(VOID)OsFutexUnlock(&hashNode->listLock);
EXIT_UNLOCK_ERR:
return futexRet;
}
- 释放锁时就需要将
queueList
上挂起任务唤醒,可详细跟踪函数OsFutexWaitTask
,如果没有任务再等锁了就DeleteKey
STATIC INT32 OsFutexWakeTask(UINTPTR futexKey, UINT32 flags, INT32 wakeNumber, FutexNode **newHeadNode, BOOL *wakeAny)
{
UINT32 intSave;
FutexNode *node = NULL;
FutexNode *headNode = NULL;
UINT32 index = OsFutexKeyToIndex(futexKey, flags);
FutexHash *hashNode = &g_futexHash[index];
FutexNode tempNode = { //先组成一个临时快锁节点,目的是为了找到哈希桶中是否有这个节点
.key = futexKey,
.index = index,
.pid = (flags & FUTEX_PRIVATE) ? LOS_GetCurrProcessID() : OS_INVALID,
}; node = OsFindFutexNode(&tempNode);//找快锁节点
if (node == NULL) {
return LOS_EBADF;
} headNode = node; SCHEDULER_LOCK(intSave);
OsFutexCheckAndWakePendTask(headNode, wakeNumber, hashNode, newHeadNode, wakeAny);//再找到等这把锁的唤醒指向数量的任务
if ((*newHeadNode) != NULL) {
OsFutexReplaceQueueListHeadNode(headNode, *newHeadNode);
OsFutexDeinitFutexNode(headNode);
} else if (headNode->index < FUTEX_INDEX_MAX) {
OsFutexDeleteKeyFromFutexList(headNode);
OsFutexDeinitFutexNode(headNode);
}
SCHEDULER_UNLOCK(intSave); return LOS_OK;
}
百文说内核 | 抓住主脉络
- 百文相当于摸出内核的肌肉和器官系统,让人开始丰满有立体感,因是直接从注释源码起步,在加注释过程中,每每有心得处就整理,慢慢形成了以下文章。内容立足源码,常以生活场景打比方尽可能多的将内核知识点置入某种场景,具有画面感,容易理解记忆。说别人能听得懂的话很重要! 百篇博客绝不是百度教条式的在说一堆诘屈聱牙的概念,那没什么意思。更希望让内核变得栩栩如生,倍感亲切。
- 与代码需不断
debug
一样,文章内容会存在不少错漏之处,请多包涵,但会反复修正,持续更新,v**.xx
代表文章序号和修改的次数,精雕细琢,言简意赅,力求打造精品内容。 - 百文在 < 鸿蒙研究站 | 开源中国 | 博客园 | 51cto | csdn | 知乎 | 掘金 > 站点发布,公众号回复 百文 可方便阅读。
按功能模块:
百万注源码 | 处处扣细节
百万汉字注解内核目的是要看清楚其毛细血管,细胞结构,等于在拿放大镜看内核。内核并不神秘,带着问题去源码中找答案是很容易上瘾的,你会发现很多文章对一些问题的解读是错误的,或者说不深刻难以自圆其说,你会慢慢形成自己新的解读,而新的解读又会碰到新的问题,如此层层递进,滚滚向前,拿着放大镜根本不愿意放手。
< gitee | github | coding | gitcode > 四大码仓推送 | 同步官方源码,公众号中回复 百万 可方便阅读。
关注不迷路 | 代码即人生
v80.01 鸿蒙内核源码分析(内核态锁篇) | 如何实现快锁Futex(下) | 百篇博客分析OpenHarmony源码的更多相关文章
- v79.01 鸿蒙内核源码分析(用户态锁篇) | 如何使用快锁Futex(上) | 百篇博客分析OpenHarmony源码
百篇博客分析|本篇为:(用户态锁篇) | 如何使用快锁Futex(上) 进程通讯相关篇为: v26.08 鸿蒙内核源码分析(自旋锁) | 当立贞节牌坊的好同志 v27.05 鸿蒙内核源码分析(互斥锁) ...
- 鸿蒙内核源码分析(文件系统篇) | 用图书管理说文件系统 | 百篇博客分析OpenHarmony源码 | v63.01
百篇博客系列篇.本篇为: v63.xx 鸿蒙内核源码分析(文件系统篇) | 用图书管理说文件系统 | 51.c.h.o 文件系统相关篇为: v62.xx 鸿蒙内核源码分析(文件概念篇) | 为什么说一 ...
- 鸿蒙内核源码分析(文件概念篇) | 为什么说一切皆是文件 | 百篇博客分析OpenHarmony源码 | v62.01
百篇博客系列篇.本篇为: v62.xx 鸿蒙内核源码分析(文件概念篇) | 为什么说一切皆是文件 | 51.c.h.o 本篇开始说文件系统,它是内核五大模块之一,甚至有Linux的设计哲学是" ...
- 鸿蒙内核源码分析(编译过程篇) | 简单案例窥视GCC编译全过程 | 百篇博客分析OpenHarmony源码| v57.01
百篇博客系列篇.本篇为: v57.xx 鸿蒙内核源码分析(编译过程篇) | 简单案例窥视编译全过程 | 51.c.h.o 编译构建相关篇为: v50.xx 鸿蒙内核源码分析(编译环境篇) | 编译鸿蒙 ...
- 鸿蒙内核源码分析(进程镜像篇)|ELF是如何被加载运行的? | 百篇博客分析OpenHarmony源码 | v56.01
百篇博客系列篇.本篇为: v56.xx 鸿蒙内核源码分析(进程映像篇) | ELF是如何被加载运行的? | 51.c.h.o 加载运行相关篇为: v51.xx 鸿蒙内核源码分析(ELF格式篇) | 应 ...
- 鸿蒙内核源码分析(重定位篇) | 与国际接轨的对外部发言人 | 百篇博客分析OpenHarmony源码 | v55.01
百篇博客系列篇.本篇为: v55.xx 鸿蒙内核源码分析(重定位篇) | 与国际接轨的对外部发言人 | 51.c.h.o 加载运行相关篇为: v51.xx 鸿蒙内核源码分析(ELF格式篇) | 应用程 ...
- v72.01 鸿蒙内核源码分析(Shell解析) | 应用窥伺内核的窗口 | 百篇博客分析OpenHarmony源码
子曰:"苟正其身矣,于从政乎何有?不能正其身,如正人何?" <论语>:子路篇 百篇博客系列篇.本篇为: v72.xx 鸿蒙内核源码分析(Shell解析篇) | 应用窥视 ...
- v75.01 鸿蒙内核源码分析(远程登录篇) | 内核如何接待远方的客人 | 百篇博客分析OpenHarmony源码
子曰:"不学礼,无以立 ; 不学诗,无以言 " <论语>:季氏篇 百篇博客分析.本篇为: (远程登录篇) | 内核如何接待远方的客人 设备驱动相关篇为: v67.03 ...
- v76.01 鸿蒙内核源码分析(共享内存) | 进程间最快通讯方式 | 百篇博客分析OpenHarmony源码
百篇博客分析|本篇为:(共享内存篇) | 进程间最快通讯方式 进程通讯相关篇为: v26.08 鸿蒙内核源码分析(自旋锁) | 当立贞节牌坊的好同志 v27.05 鸿蒙内核源码分析(互斥锁) | 同样 ...
随机推荐
- C#进阶——从应用上理解异步编程的作用(async / await)
欢迎来到学习摆脱又加深内卷篇 下面是学习异步编程的应用 1.首先,我们建一个winfrom的项目,界面如下: 2.然后先写一个耗时函数: /// <summary> /// 耗时工作 // ...
- SYCOJ2197三角形游戏
题目-三角形游戏 (shiyancang.cn) 对于任意的一个数字,把他拆分为n个数字,使得其逐层和为该数字. 首先n很小,所以很可能是搜索.DFS,n回选择. #include<bits/s ...
- FastDFSJava客户端使用
1.1.java客户端 余庆先生提供了一个Java客户端,但是作为一个C程序员,写的java代码可想而知.而且已经很久不维护了. 这里推荐一个开源的FastDFS客户端,支持最新的SpringBoot ...
- 解析HetuEngine实现On Yarn原理
摘要:本文介绍HetuEngine实现On Yarn的原理,通过阅读本文,读者可以了解HetuEngine如何在资源使用方面融入Hadoop生态体系. 本文分享自华为云社区<MRS HetuEn ...
- 【Java】IntelliJ IDEA 快捷键
IntelliJ IDEA 快捷键 1. Editing(编辑) 快捷键 介绍 Ctrl +Space 基本代码补全,输入字母按后列出匹配的词组 Ctrl+Shift+Space 智能代码补全,列出与 ...
- Solon Web 开发
Solon Web 开发 一.开始 二.开发知识准备 三.打包与运行 四.请求上下文 五.数据访问.事务与缓存应用 六.过滤器.处理.拦截器 七.视图模板与Mvc注解 八.校验.及定制与扩展 九.跨域 ...
- Windows Server 2008 R2 数据离机备份与恢复操作手册
Windows Server 2008 R2 数据离机备份与恢复操作手册 实验环境 Windows server 2008 R2(服务器) IP地址:192.168.136.175 计算机名:CXH ...
- 沁恒CH32F103C8T6(三): PlatformIO DAPLink和WCHLink下载配置
目录 沁恒CH32F103C8T6(一): Keil5环境配置,示例运行和烧录 沁恒CH32F103C8T6(二): Linux PlatformIO环境配置, 示例运行和烧录 沁恒CH32F103C ...
- shiro 快速入门详解。
package com.aaa.lee.shiro; import org.apache.shiro.SecurityUtils; import org.apache.shiro.authc.*; i ...
- Spring系列13:bean的生命周期
本文内容 bean的完整的生命周期 生命周期回调接口 Aware接口详解 Spring Bean的生命周期 面试热题:请描述下Spring的生命周期? 4大生命周期 从源码角度来说,简单分为4大阶段: ...