Solution -「CF 555E」Case of Computer Network
\(\mathcal{Description}\)
Link.
给定 \(n\) 个点 \(m\) 条边的无向图,判断是否有给每条边定向的方案,使得 \(q\) 组有序点对 \((s,t)\) 都有 \(s\) 可达 \(t\)。
\(n,m,q\le2\times10^5\)。
\(\mathcal{Solution}\)
首先,对于原图中的边双,显然是可以让它们互相可达的,考虑把边双缩点。
此后,图变成了一片森林。单独考虑一棵树,从 \(s\) 到 \(t\) 的有向路径相当于规定了某些点连向父亲的边的方向。所以树上差分,在根上记录点对进入 / 走出子树的次数。若某个棵子树既有进入又有走出就肯定不合法啦。
\(\mathcal{Code}\)
#include <cstdio>
#include <cstdlib>
#include <assert.h>
#define adj( g, u, v ) \
for ( int i = g.head[u], v; v = g.to[i], i; i = g.nxt[i] )
#define NO() ( puts ( "NO" ), exit ( 0 ) )
const int MAXN = 2e5;
int n, m, q;
int dfc, dfn[MAXN + 5], low[MAXN + 5];
int cnt, bel[MAXN + 5], part, color[MAXN + 5];
int dep[MAXN + 5], fa[MAXN + 5][20], in[MAXN + 5], out[MAXN + 5];
bool cut[MAXN + 5], vis[MAXN + 5], chk[MAXN + 5];
struct Graph {
int ecnt, head[MAXN + 5], to[MAXN * 2 + 5], nxt[MAXN * 2 + 5];
Graph (): ecnt ( 1 ) {}
inline void link ( const int s, const int t ) {
to[++ ecnt] = t, nxt[ecnt] = head[s];
head[s] = ecnt;
}
} G, T;
inline void chkmin ( int& a, const int b ) { if ( b < a ) a = b; }
inline int rint () {
int x = 0; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () );
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x;
}
inline void Tarjan ( const int u, const int id ) {
dfn[u] = low[u] = ++ dfc;
adj ( G, u, v ) {
if ( ! dfn[v] ) {
Tarjan ( v, i ), chkmin ( low[u], low[v] );
if ( low[v] > dfn[u] ) cut[i >> 1] = true;
} else if ( i ^ id ^ 1 ) chkmin ( low[u], dfn[v] );
}
}
inline void mark ( const int u, const int col ) {
bel[u] = col, vis[u] = true;
adj ( G, u, v ) {
if ( ! cut[i >> 1] && ! vis[v] ) {
mark ( v, col );
}
}
}
inline void init ( const int u, const int f, const int c ) {
color[u] = c, dep[u] = dep[fa[u][0] = f] + 1;
for ( int i = 1; fa[u][i - 1]; ++ i ) fa[u][i] = fa[fa[u][i - 1]][i - 1];
adj ( T, u, v ) if ( v ^ f ) init ( v, u, c );
}
inline int calcLCA ( int u, int v ) {
assert ( color[u] == color[v] );
if ( dep[u] < dep[v] ) u ^= v ^= u ^= v;
for ( int i = 17; ~ i; -- i ) if ( dep[fa[u][i]] >= dep[v] ) u = fa[u][i];
if ( u == v ) return u;
for ( int i = 17; ~ i; -- i ) if ( fa[u][i] ^ fa[v][i] ) u = fa[u][i], v = fa[v][i];
return fa[u][0];
}
inline void check ( const int u, const int f ) {
chk[u] = true;
adj ( T, u, v ) if ( v ^ f ) {
check ( v, u );
if ( in[v] && out[v] ) NO ();
in[u] += in[v], out[u] += out[v];
}
}
int main () {
n = rint (), m = rint (), q = rint ();
for ( int i = 1, u, v; i <= m; ++ i ) {
u = rint (), v = rint ();
G.link ( u, v ), G.link ( v, u );
}
for ( int i = 1; i <= n; ++ i ) if ( ! dfn[i] ) Tarjan ( i, -1 );
for ( int i = 1; i <= n; ++ i ) if ( ! vis[i] ) mark ( i, ++ cnt );
for ( int u = 1; u <= n; ++ u ) {
adj ( G, u, v ) if ( cut[i >> 1] ) {
T.link ( bel[u], bel[v] );
}
}
for ( int i = 1; i <= cnt; ++ i ) if ( ! color[i] ) init ( i, 0, ++ part );
for ( int i = 1, s, t; i <= q; ++ i ) {
s = bel[rint ()], t = bel[rint ()];
if ( s == t ) continue;
if ( color[s] ^ color[t] ) NO ();
int w = calcLCA ( s, t );
++ out[s], -- out[w], ++ in[t], -- in[w];
}
for ( int i = 1; i <= n; ++ i ) if ( ! chk[i] ) check ( i, 0 );
puts ( "YES" );
return 0;
}
Solution -「CF 555E」Case of Computer Network的更多相关文章
- 「CF555E」 Case of Computer Network
「CF555E」 Case of Computer Network 传送门 又是给边定向的题目(马上想到欧拉回路) 然而这个题没有对度数的限制,你想歪了. 然后又开始想一个类似于匈牙利的算法:我先跑, ...
- Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...
- Solution -「CF 917D」Stranger Trees
\(\mathcal{Description}\) Link. 给定一棵包含 \(n\) 个点的有标号树,求与这棵树重合恰好 \(0,1,\cdots,n-1\) 条边的树的个数,对 \(10 ...
- Solution -「CF 908G」New Year and Original Order
\(\mathcal{Description}\) Link. 对于 \(x\in\mathbb N^*\),令 \(s(x)\) 表示将 \(x\) 十进制下的各位数码排序后得到的十进制数的 ...
- Solution -「CF 1622F」Quadratic Set
\(\mathscr{Description}\) Link. 求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...
- Solution -「CF 923F」Public Service
\(\mathscr{Description}\) Link. 给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...
- Solution -「CF 923E」Perpetual Subtraction
\(\mathcal{Description}\) Link. 有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...
- Solution -「CF 1586F」Defender of Childhood Dreams
\(\mathcal{Description}\) Link. 定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...
- Solution -「CF 1237E」Balanced Binary Search Trees
\(\mathcal{Description}\) Link. 定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...
随机推荐
- vue中动画的使用
不要在router-view的外层使用动画!不要在router-view的外层使用动画!不要在router-view的外层使用动画! 重要的事情说三遍,在app.vue中自以为奇思妙想(实际是脑残)在 ...
- [转]JS正则表达式基础
1. 正则表达式的概念 正则表达式(regular expression)描述了一种字符串匹配的模式.这种模式,我们可以理解成是一种"规则".根据这种规则再去匹配符合条件的结果,而 ...
- FIS Issue 标记
-----已知 [pack问题]忽视<!--[if lt IE 9]>进行合并 https://github.com/fex-team/fis/issues/253 关于增加md5戳以后文 ...
- MySQL索引失效的常见场景
当然请记住,explain是一个好习惯! MySQL索引失效的常见场景 在验证下面的场景时,请准备足够多的数据量,因为数据量少时,MySQL的优化器有时会判定全表扫描无伤大雅,就不会命中索引了. 1. ...
- AVD模拟器怎么配置上网
转自:http://blog.csdn.net/you_jinjin/article/details/7228303 方法一 首先,Windows下,配置Adroid环境变量(Win7为例) 1.桌面 ...
- Linux 安装 MySQL 8.0.26 超详细图文步骤
1.MySQL 8.0.26 下载 官方网站下载 MySQL 8.0.26 安装包,下载地址: https://downloads.mysql.com/archives/community/ 需要注意 ...
- [硬件]USB TYPE C引脚定义
- 【刷题-LeetCode】199 Binary Tree Right Side View
Binary Tree Right Side View Given a binary tree, imagine yourself standing on the right side of it, ...
- golang中的rpc开发
golang中实现RPC非常简单,官方提供了封装好的库,还有一些第三方的库 golang官方的net/rpc库使用encoding/gob进行编解码,支持tcp和http数据传输方式,由于其他语言不支 ...
- Servlet-斜杠在web中不同意义
Servlet-斜杠在web中不同意义 在web中 / 斜杠是一种绝对路径 / 斜杠 如果被浏览器解析,得到的地址是:http://ip/port/ / 斜杠 如果被服务器解析,得到的地址是:http ...