Solution -「多校联训」查拉图斯特拉如是说
\(\mathcal{Description}\)
Link.
给定 \(n\) 和 \(m\) 次多项式 \(f(x)\),求
\]
\(m\le10^5\),\(m\le n\le 10^9\)。
\(\mathcal{Solution}\)
推式子叭~
\sum_{i=0}^n\binom{n}{i}f(i)&=\sum_{i=0}^ma_i\sum_{j=0}^n\binom{n}{i}j^i\\
&=\sum_{i=0}^ma_ii![x^i]\left(\sum_{j=0}^{+\infty}\frac{x^j}{j!}\sum_{k=0}^n\binom{n}{k}k^j\right)\\
&=\sum_{i=0}^ma_ii![x^i]\left(\sum_{k=0}^n\binom{n}{k}e^{kx}\right)\\
&=\sum_{i=0}^ma_ii![x^i](e^x+1)^n
\end{aligned}
\]
多项式全家桶算出 \((e^x+1)^n\) 即可,复杂度 \(\mathcal O(m\log m)\)。
\(\mathcal{Code}\)
/*~Rainybunny~*/
#include <cmath>
#include <cstdio>
#include <algorithm>
#define rep( i, l, r ) for ( int i = l, rpbound##i = r; i <= rpbound##i; ++i )
#define per( i, r, l ) for ( int i = r, rpbound##i = l; i >= rpbound##i; --i )
const int MOD = 998244353, MAXL = 1 << 18, MAXM = 1e5, INV2 = MOD + 1 >> 1;
int n, m, c[MAXM + 5], fac[MAXL + 5], ifac[MAXL + 5];
int F[MAXL + 5], G[MAXL + 5];
inline int sub( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline int mul( const long long a, const int b ) { return int( a * b % MOD ); }
inline int add( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline int mpow( int a, int b ) {
int ret = 1;
for ( ; b; a = mul( a, a ), b >>= 1 ) ret = mul( ret, b & 1 ? a : 1 );
return ret;
}
inline void init( const int len ) {
fac[0] = 1;
rep ( i, 1, len ) fac[i] = mul( i, fac[i - 1] );
ifac[len] = mpow( fac[len], MOD - 2 );
per ( i, len - 1, 0 ) ifac[i] = mul( i + 1, ifac[i + 1] );
}
namespace PolyOper {
const int MG = 3;
int inv[MAXL + 5], omega[19][MAXL + 5];
inline void init() {
inv[1] = 1;
rep ( i, 2, MAXL ) inv[i] = mul( MOD - MOD / i, inv[MOD % i] );
rep ( i, 0, 18 ) {
int* oi = omega[i];
oi[0] = 1;
int& o1 = oi[1] = mpow ( MG, MOD - 1 >> i >> 1 );
rep ( j, 2, ( 1 << i ) - 1 ) oi[j] = mul( oi[j - 1], o1 );
}
}
inline void ntt( const int n, int* u, const int type ) {
static int rev[MAXL + 5];
int lgn = 1;
for ( ; 1 << lgn < n; ++lgn );
rep ( i, 1, n - 1 ) rev[i] = rev[i >> 1] >> 1 | ( i & 1 ) << lgn >> 1;
rep ( i, 1, n - 1 ) if ( i < rev[i] ) {
u[i] ^= u[rev[i]] ^= u[i] ^= u[rev[i]];
}
for ( int i = 0, stp = 1; stp < n; ++i, stp <<= 1 ) {
const int* oi = omega[i];
for ( int j = 0; j < n; j += stp << 1 ) {
rep ( k, j, j + stp - 1 ) {
int ev = u[k], ov = mul( oi[k - j], u[k + stp] );
u[k] = add( ev, ov ), u[k + stp] = sub( ev, ov );
}
}
}
if ( type == -1 ) {
for ( int invn = MOD - ( MOD - 1 ) / n, i = 0; i < n; ++i ) {
u[i] = mul( u[i], invn );
}
std::reverse( u + 1, u + n );
}
}
inline void polyDir ( const int n, const int* u, int* w ) {
rep ( i, 1, n - 1 ) w[i - 1] = mul( i, u[i] );
w[n - 1] = 0;
}
inline void polyInt( const int n, const int* u, int* w ) {
per ( i, n - 1, 0 ) w[i + 1] = mul( inv[i + 1], u[i] );
w[0] = 0;
}
inline void polyInv( const int n, const int* u, int* w ) {
static int tmp[2][MAXL + 5];
if ( n == 1 ) return void( w[0] = mpow( u[0], MOD - 2 ) );
polyInv( n >> 1, u, w );
rep ( i, 0, n - 1 ) tmp[0][i] = u[i], tmp[1][i] = w[i];
ntt( n << 1, tmp[0], 1 ), ntt( n << 1, tmp[1], 1 );
rep ( i, 0, ( n << 1 ) - 1 ) {
tmp[0][i] = mul( mul( tmp[0][i], tmp[1][i] ), tmp[1][i] );
}
ntt( n << 1, tmp[0], -1 );
rep ( i, 0, n - 1 ) w[i] = sub( mul( 2, w[i] ), tmp[0][i] );
rep ( i, 0, ( n << 1 ) - 1 ) tmp[0][i] = tmp[1][i] = 0;
}
inline void polyLn( const int n, const int* u, int* w ) {
static int tmp[2][MAXL + 5];
polyDir( n, u, tmp[0] ), polyInv( n, u, tmp[1] );
ntt( n << 1, tmp[0], 1 ), ntt( n << 1, tmp[1], 1 );
rep ( i, 0, ( n << 1 ) - 1 ) tmp[0][i] = mul( tmp[0][i], tmp[1][i] );
ntt( n << 1, tmp[0], -1 ), polyInt( n << 1, tmp[0], w );
rep ( i, 0, ( n << 1 ) - 1 ) tmp[0][i] = tmp[1][i] = 0;
}
inline void polyExp ( const int n, const int* u, int* w ) {
static int tmp[MAXL + 5];
if ( n == 1 ) return void( w[0] = 1 );
polyExp( n >> 1, u, w ), polyLn( n, w, tmp );
tmp[0] = sub( add( u[0], 1 ), tmp[0] );
rep ( i, 1, n - 1 ) tmp[i] = sub( u[i], tmp[i] );
ntt( n << 1, tmp, 1 ), ntt( n << 1, w, 1 );
rep ( i, 0, ( n << 1 ) - 1 ) w[i] = mul( w[i], tmp[i] );
ntt( n << 1, w, -1 );
rep ( i, n, ( n << 1 ) - 1 ) w[i] = tmp[i] = 0;
}
} // namespace PolyOper.
int main () {
freopen( "number.in", "r", stdin );
freopen( "number.out", "w", stdout );
PolyOper::init();
scanf( "%d %d", &n, &m ), ++m;
rep ( i, 0, m - 1 ) scanf( "%d", &c[i] );
int len = 1;
for ( ; len < m; len <<= 1 );
init( len ), F[0] = 1;
rep ( i, 1, len - 1 ) F[i] = mul( ifac[i], INV2 );
PolyOper::polyLn( len, F, G );
rep ( i, 0, len - 1 ) G[i] = mul( G[i], n ), F[i] = 0;
PolyOper::polyExp( len, G, F );
int ans = 0;
rep ( i, 0, m - 1 ) ans = add( ans, mul( c[i], mul( fac[i], F[i] ) ) );
printf( "%d\n", mul( ans, mpow( 2, n ) ) );
return 0;
}
Solution -「多校联训」查拉图斯特拉如是说的更多相关文章
- Solution -「多校联训」数学考试
\(\mathcal{Description}\) Link. 给定 \(n\) 个函数,第 \(i\) 个有 \(f_i(x)=a_ix^3+b_ix^2+cx_i+d~(x\in[l_i, ...
- Solution -「多校联训」排水系统
\(\mathcal{Description}\) Link. 在 NOIP 2020 A 的基础上,每条边赋权值 \(a_i\),随机恰好一条边断掉,第 \(i\) 条段的概率正比于 \(a ...
- Solution -「多校联训」I Love Random
\(\mathcal{Description}\) 给定排列 \(\{p_n\}\),可以在其上进行若干次操作,每次选取 \([l,r]\),把其中所有元素变为原区间最小值,求能够得到的所有不同序 ...
- Solution -「多校联训」签到题
\(\mathcal{Description}\) Link. 给定二分图 \(G=(X\cup Y,E)\),求对于边的一个染色 \(f:E\rightarrow\{1,2,\dots,c\ ...
- Solution -「多校联训」朝鲜时蔬
\(\mathcal{Description}\) Link. 破案了,朝鲜时蔬 = 超现实树!(指写得像那什么一样的题面. 对于整数集 \(X\),定义其 好子集 为满足 \(Y\sub ...
- Solution -「多校联训」消失的运算符
\(\mathcal{Description}\) Link. 给定长度为 \(n\) 的合法表达式序列 \(s\),其中数字仅有一位正数,运算符仅有 - 作为占位.求将其中恰好 \(k\) ...
- Solution -「多校联训」假人
\(\mathcal{Description}\) Link. 一种物品有 长度 和 权值 两种属性,现给定 \(n\) 组物品,第 \(i\) 组有 \(k_i\) 个,分别为 \((1,a ...
- Solution -「多校联训」古老的序列问题
\(\mathcal{Description}\) Link. 给定序列 \(\{a_n\}\),和 \(q\) 次形如 \([L,R]\) 的询问,每次回答 \[\sum_{[l,r]\su ...
- Solution -「多校联训」Sample
\(\mathcal{Description}\) Link (稍作简化:)对于变量 \(p_{1..n}\),满足 \(p_i\in[0,1],~\sum p_i=1\) 时,求 \(\ma ...
随机推荐
- js 多层 元素叠起来避免误触的解决方法
添加一层 元素,将点击事件设为 onClick="event.cancelBubble = true" 这样就能将两个可触发事件的元素给隔开
- SQL高级优化(一)之MySQL优化
不同方案效率对比 MySQL各字段默认长度(一字节为8位) 整型: TINYINT 1 字节 SMALLINT 2 个字节 MEDIUMINT 3 个字节 INT 4 个字节 INTEGER 4 个字 ...
- VAE变分自编码器
我在学习VAE的时候遇到了很多问题,很多博客写的不太好理解,因此将很多内容重新进行了整合. 我自己的学习路线是先学EM算法再看的变分推断,最后学VAE,自我感觉这个线路比较好理解. 一.首先我们来宏观 ...
- Java对象栈上分配
转自 https://blog.csdn.net/o9109003234/article/details/101365108 在学习Java的过程中,很多喜欢说new出来的对象分配一定在对上: 其实不 ...
- Anchor CMS 0.12.7 跨站请求伪造漏洞(CVE-2020-23342)
这个漏洞复现相对来说很简单,而且这个Anchor CMS也十分适合新手训练代码审计能力.里面是一个php框架的轻量级设计,通过路由实现的传递参数. 0x00 漏洞介绍 Anchor(CMS)是一款优秀 ...
- phpstudy后门POC分析和EXP开发
POC 2019年9月20日,网上传出 phpStudy 软件存在后门,随后作者立即发布声明进行澄清,其真实情况是该软件官网于2016年被非法入侵,程序包自带PHP的php_xmlrpc.dll模块被 ...
- Windows如何搭建SSL通信(非Web)
自己研究了会儿,把结论发出来给有需要的人 第一步:准备环境 首先需要一台服务器(这不是废话吗),我这边用的windows2003, 还需要一台客户端,我用的是windwos2008 第二步:服务器环境 ...
- 业务驱动的全景监控体系在阿里的应用 | 阿里巴巴DevOps实践指南
编者按:本文源自阿里云云效团队出品的<阿里巴巴DevOps实践指南>,扫描上方二维码或前往:https://developer.aliyun.com/topic/devops,下载完整版电 ...
- 学习Java第4天
今天所作的工作: 1.类 2.类的构造方法 3.静态变量 4.类的主方法 5.对象 今天没有完成昨天的工作安排,因为发现进入类之后的编程思想发生的变化,相对与c++的逻辑既有较大的相似性又有不同的性质 ...
- java秒杀系列(1)- 秒杀方案总体思路
前言 首先,要明确一点,高并发场景下系统的瓶颈出现在哪里,其实主要就是数据库,那么就要想办法为数据库做层层防护,减轻数据库的压力. 一.简单图示 我用一个比较简单直观的图来表达大概的处理思路 二.生产 ...