leetcode 刷题(数组篇)74 题 搜索二维矩阵 (二分查找)
二分查找要注意边界值的取值,边界情况的判定
题目描述
编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:
- 每行中的整数从左到右按升序排列。
- 每行的第一个整数大于前一行的最后一个整数。
示例 1:
输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
输出:true
示例 2:
输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13
输出:false
提示:
- m == matrix.length
- n == matrix[i].length
- 1 <= m, n <= 100
- -104 <= matrix[i][j], target <= 104
解答
解法一 先搜索在哪一行再搜索某一行
算法复杂度\(O(m+n)\)
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
int len = matrix.length;
int n = matrix[0].length;
for (int i = 0; i < len ; ++i) {
if (target >= matrix[i][0] && i + 1 <= len - 1 && target < matrix[i+1][0]) {
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == target) {
return true;
}
}
}
else if (target >= matrix[i][0] && i == len - 1) {
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == target) {
return true;
}
}
}
}
return false;
}
}
解法二 在解法一的基础上二分查找
算法复杂度\(O(log(mn))\)
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
int m = matrix.length;
int n = matrix[0].length;
int m1 = findm(matrix, target, 0, m-1);
if (m1==-1) {return false;}
return findn(matrix[m1], target, 0, n-1);
}
public int findm(int[][] matrix, int target, int s, int t) {
if (s == t) {
return target >= matrix[s][0] && target <= matrix[s][matrix[0].length-1] ? s : -1;
}
int mid = (s + t) >> 1;
if (target >= matrix[mid][0] && target < matrix[mid+1][0]) {
return mid;
}
else if (target > matrix[mid][0]) {
// 这里选择 mid+1 是为什么,细品一下
return findm(matrix, target, mid + 1, t);
}
else {
// 这里选择 mid 为什么不是 mid-1,继续品
return findm(matrix, target, s, mid);
}
}
public boolean findn(int[] matrix, int target, int s, int t) {
if (s == t) {
return matrix[s] == target || matrix[t] == target;
}
int mid = (s + t) >> 1;
if (target == matrix[mid]) {
return true;
}
else if (matrix[mid] < target) {
return findn(matrix, target, mid + 1, t);
}
else {
return findn(matrix, target, s, mid);
}
}
}
解法三 将二维数组当做一维数组,二分查找
算法复杂度为\(O(log(m+n))\)
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
int m = matrix.length;
int n = matrix[0].length;
int pi = 0, pj = m * n - 1;
while (pj > pi) {
int mid = (pi + pj) >> 1;
int i = mid / n;
int j = mid % n;
if (matrix[i][j] == target) {
return true;
}
else if (matrix[i][j] > target) {
pj = mid;
continue;
}
else {
pi = mid + 1;
continue;
}
}
if (pi == pj) {
int i = pi / n;
int j = pi % n;
return matrix[i][j] == target;
}
return false;
}
}
leetcode 刷题(数组篇)74 题 搜索二维矩阵 (二分查找)的更多相关文章
- LeetCode:搜索二维矩阵【74】
LeetCode:搜索二维矩阵[74] 题目描述 编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值.该矩阵具有如下特性: 每行中的整数从左到右按升序排列. 每行的第一个整数大于前一行的 ...
- LeetCode 74. 搜索二维矩阵(Search a 2D Matrix)
74. 搜索二维矩阵 74. Search a 2D Matrix 题目描述 编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值.该矩阵具有如下特性: 每行中的整数从左到右按升序排列. ...
- 【leetcode】74. 搜索二维矩阵
题目链接:传送门 题目描述 编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值.该矩阵具有如下特性: 每行中的整数从左到右按升序排列. 每行的第一个整数大于前一行的最后一个整数. 示例 ...
- Java实现 LeetCode 74 搜索二维矩阵
74. 搜索二维矩阵 编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值.该矩阵具有如下特性: 每行中的整数从左到右按升序排列. 每行的第一个整数大于前一行的最后一个整数. 示例 1: ...
- Leetcode之二分法专题-240. 搜索二维矩阵 II(Search a 2D Matrix II)
Leetcode之二分法专题-240. 搜索二维矩阵 II(Search a 2D Matrix II) 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target.该矩阵 ...
- LeetCode 240. 搜索二维矩阵 II(Search a 2D Matrix II) 37
240. 搜索二维矩阵 II 240. Search a 2D Matrix II 题目描述 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target.该矩阵具有以下特性 ...
- Leetcode 240.搜索二维矩阵II
搜索二维矩阵II 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target.该矩阵具有以下特性: 每行的元素从左到右升序排列. 每列的元素从上到下升序排列. 示例: 现有 ...
- Java实现 LeetCode 240 搜索二维矩阵 II(二)
240. 搜索二维矩阵 II 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target.该矩阵具有以下特性: 每行的元素从左到右升序排列. 每列的元素从上到下升序排列. ...
- LeetCode74.搜索二维矩阵
74.搜索二维矩阵 描述 编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值.该矩阵具有如下特性: 每行中的整数从左到右按升序排列. 每行的第一个整数大于前一行的最后一个整数. 示例 示 ...
- lintcode:搜索二维矩阵II
题目 搜索二维矩阵 II 写出一个高效的算法来搜索m×n矩阵中的值,返回这个值出现的次数. 这个矩阵具有以下特性: 每行中的整数从左到右是排序的. 每一列的整数从上到下是排序的. 在每一行或每一列中没 ...
随机推荐
- Android混合Flutter
官方文档 实验性:将Flutter添加到Android 测试仓库 取决于模块的源代码 方法测试成功
- C#从1970年开始到现在时间的总秒数
TimeSpan timeSpan = (DateTime.UtcNow - new DateTime(1970, 1, 1)); string timeStamp = ((int)timeSpan. ...
- iOS拍个小视频
需求 公司混合开发,uni端拍小视频不是很理想,为达到仿微信效果,原生插件走起 思路 第1步:1个AVCaptureSession, 1块AVCaptureVideoPreviewLayer[考虑兼容 ...
- 使用EF的Code First模式创建模型
Entity Framework Core Entity Framework (EF) Core 是轻量化.可扩展.开源和跨平台版的常用 Entity Framework 数据访问技术. EF Cor ...
- Django之csrf中间件及auth模块使用
目录 一.基于配置文件的编程思想 1. importlib 模块 2. 配置文件 二.跨站请求伪造(csrf) 1.csrf简介以及由来 2.Django中的csrf中间件如何使用 2.1 普通for ...
- VMware 安装 CentOS7 后的简单配置
1.连网 如果能连网,跳过此步 试着ping一下百度 ping baidu.com 动态分配 IP sudo vim /etc/sysconfig/network-scripts/ifcfg-ens3 ...
- Python3.x 基础练习题100例(51-60)
练习51: 题目: 学习使用 按位与(&) . 分析: 0&0=0; 0&1=0; 1&0=0; 1&1=1. 程序: if __name__ == '__ma ...
- 剑指 Offer 48. 最长不含重复字符的子字符串 + 动态规划 + 哈希表 + 双指针 + 滑动窗口
剑指 Offer 48. 最长不含重复字符的子字符串 Offer_48 题目详情 解法分析 解法一:动态规划+哈希表 package com.walegarrett.offer; /** * @Aut ...
- 设计模式之抽象工厂模式(Abstract Factory Pattern)
一.抽象工厂模式的由来 抽象工厂模式,最开始是为了解决操作系统按钮和窗体风格,而产生的一种设计模式.例如:在windows系统中,我们要用windows设定的按钮和窗体,当我们切换Linux系统时,要 ...
- 修改 Hosts 解决 Github 访问缓慢问题
背景 最近访问 Github 经常出现访问速度慢的问题,甚至会出现无法连接的情况.有一天,在一次家常聊天中提到了这个事情,有一位热心的 Gitee 朋友就说:你改一下 Hosts 文件就可以了.修改了 ...