最短Hamilton路径
题目描述
输入
接下来n行每行n个整数,其中第i行第j个整数表示点i到j的距离(一个不超过10^7的正整数,记为a[i,j])。
对于任意的x,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]>=a[x,z]。
输出
样例输入
4
0 2 1 3
2 0 2 1
1 2 0 1
3 1 1 0
样例输出
4
分析:(学习lllxq大佬)状压DP,dp[i][j]表示从起点s到点j,且经过i的二进制表示中值为1的位所对应的点的最短路径;则状态转移方程为:dp[i][j]=min(dp[i][j],dp[i^(1<<j)][k]+Map[k][j])(k=1~n)。
#include <iostream>
#include <string>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#define range(i,a,b) for(int i=a;i<=b;++i)
#define LL long long
#define rerange(i,a,b) for(int i=a;i>=b;--i)
#define fill(arr,tmp) memset(arr,tmp,sizeof(arr))
using namespace std;
int n,ans,MAP[][],dp[<<][];
void init(){
cin>>n;
range(i,,n-)range(j,,n-)cin>>MAP[i][j];
fill(dp,0x3f);
dp[][]=;
}
void solve(){
range(i,,(<<n)-)
range(j,,n-)if((i>>j)&)
range(k,,n-)if((i>>k)&)dp[i][j]=min(dp[i][j],dp[i^(<<j)][k]+MAP[k][j]);
cout<<dp[(<<n)-][n-]<<endl;
}
int main() {
init();
solve();
return ;
最短Hamilton路径的更多相关文章
- 『最短Hamilton路径 状态压缩DP』
状压DP入门 最短Hamilton路径 Description 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamil ...
- 最短Hamilton路径【状压DP】
给定一张 nn 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次. 输入 ...
- 位运算 - 最短Hamilton路径
给定一张 n 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次. 输入格 ...
- 0103 最短Hamilton路径【状压DP】
0103 最短Hamilton路径 0x00「基本算法」例题 描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Ham ...
- 最短Hamilton路径-状压dp解法
最短Hamilton路径 时间限制: 2 Sec 内存限制: 128 MB 题目描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamil ...
- AcWing 91. 最短Hamilton路径
今天第一次在\(AcWing\)这个网站上做题,来发一下此网站的第一篇题解 传送门 思路 直接枚举的话时间复杂度为\(O(n*n!)\) 复杂度显然爆炸,所以我们用二进制枚举,这样就可以把复杂度降到\ ...
- ACAG 0x01-4 最短Hamilton路径
ACAG 0x01-4 最短Hamilton路径 论为什么书上标程跑不过这道题-- 首先,这道题与今年CSP-S2的D1T3有着异曲同工之妙,那就是--都有$O(n!)$的做法!(大雾) 这道题的正解 ...
- # 最短Hamilton路径(二进制状态压缩)
最短Hamilton路径(二进制状态压缩) 题目描述:n个点的带权无向图,从0-n-1,求从起点0到终点n-1的最短Hamilton路径(Hamilton路径:从0-n-1不重不漏的每个点恰好进过一次 ...
- 最短Hamilton路径 数位dp
最短Hamilton路径 #include<bits/stdc++.h> using namespace std; ; <<maxn][maxn]; int maps[maxn ...
随机推荐
- Harbor HA部署-使用Ceph RADOS后端
1. 前言 Harbor 1.4.0版本开始提供了HA部署方式,和非HA的主要区别就是把有状态的服务分离出来,使用外部集群,而不是运行在本地的容器上.而无状态的服务则可以部署在多个节点上,通过配置上层 ...
- 3224: Tyvj 1728 普通平衡树(finger tree)
3224: Tyvj 1728 普通平衡树 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 19122 Solved: 8359[Submit][St ...
- msconfig.exe
msconfig.exe 编辑 本词条缺少概述.名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧! 中文名 微软系统配置实用程序 外文名 msconfig.exe 出品者 Micros ...
- Android环境安装简单总结
1.安装JDK 参考 http://jingyan.baidu.com/article/215817f7e3f2bd1eda1423f4.html 2.安装android SDK 参考 http:// ...
- Python基础-week08 并发编程
一 背景知识 顾名思义,进程即正在执行的一个过程.进程是对正在运行程序的一个抽象. 进程的概念起源于操作系统,是操作系统最核心的概念,也是操作系统提供的最古老也是最重要的抽象概念之一.操作系统的其他所 ...
- Python 操作 SQLite 数据库
写在之前 SQLite 是一个小型的关系型数据库,它最大的特点在于不需要单独的服务.零配置.我们在之前讲过的两个数据库,不管是 MySQL 还是 MongoDB,都需要我们安装.安装之后,然后运行起来 ...
- Leetcode 654.最大二叉树
最大二叉树 给定一个不含重复元素的整数数组.一个以此数组构建的最大二叉树定义如下: 二叉树的根是数组中的最大元素. 左子树是通过数组中最大值左边部分构造出的最大二叉树. 右子树是通过数组中最大值右边部 ...
- leetcode NO.171 Excel表列序号 (python实现)
来源 https://leetcode-cn.com/problems/excel-sheet-column-number/description/ 题目描述 给定一个Excel表格中的列名称,返回其 ...
- call、apply与bind在理解
call() 方法在使用一个指定的 this 值和若干个指定的参数值的前提下调用某个函数或方法. fun.call(thisArg[, arg1[, arg2[, ...]]]) apply() 方法 ...
- iOS开发UI篇—CALayer
一.简单介绍 在iOS中,你能看得见摸得着的东西基本上都是UIView,比如一个按钮.一个文本标签.一个文本输入框.一个图标等等,这些都是UIView. 其实UIView之所以能显示在屏幕上,完全 ...