#10056. 「一本通 2.3 练习 5」The XOR-longest Path

题目描述

原题来自:POJ 3764

给定一棵 nnn 个点的带权树,求树上最长的异或和路径。

输入格式

第一行一个整数 nnn,接下来 n−1n-1n−1 行每行三个整数 u,v,wu,v,wu,v,w,表示 u,vu,vu,v 之间有一条长度为 www 的边。

输出格式

输出一行一个整数,表示答案。

样例

样例输入

4
1 2 3
2 3 4
2 4 6

样例输出

7

样例解释

最长的异或和路径是 1→2→31\to 2\to 31→2→3 ,它的长度是 3⨁4=73 \bigoplus 4=73⨁4=7。

注意:结点下标从 111 开始到 NNN。

注:x⨁yx \bigoplus yx⨁y 表示 xxx 与 yyy 按位异或。

数据范围与提示

对于 100%100\%100% 的数据,1≤n≤105,1≤u,v≤n,0≤w<2311\le n\le 10^5,1\le u, v \le n,0 \le w < 2^{31}1≤n≤10​5​​,1≤u,v≤n,0≤w<2​31​​

题解

首先对于树上两点路径的异或值,可以用一个树上前缀和维护。

记$sum[x]$为$x$到祖先的异或和。

由于异或有:$a ⨁ a = 0$

所以如下图,在$sum[u] ⨁ sum[v]$时,lca以上的屎色线已经被消掉了。

所以$ans=sum[u] ⨁ sum[v]$

问题转化为:有1e5个数,要求其中两数异或的最大值。

于是变为「LOJ#10050」「一本通 2.3 例 2」The XOR Largest Pair (Trie

于是这道题就可以由两道看起来离得很远的题拼起来而成了。

 编号     题目     状态     分数     总时间     内存     代码 / 答案文件     提交者     提交时间
# #. 「一本通 2.3 练习 」The XOR-longest Path Accepted ms KiB C++ / 1.8 K qwerta -- :: #include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
inline int read()
{
char ch=getchar();
int x=;
while(!isdigit(ch))ch=getchar();
while(isdigit(ch)){x=x*+ch-'';ch=getchar();}
return x;
}
const int MAXN=1e5+;
struct emm{
int e,f,v;
}a[*MAXN];//用来建树
int h[MAXN];
int tot=;
void con(int x,int y,int l)//连树边
{
a[++tot].f=h[x];
h[x]=tot;
a[tot].e=y;
a[tot].v=l;
a[++tot].f=h[y];
h[y]=tot;
a[tot].e=x;
a[tot].v=l;
return;
}
int d[MAXN],w[MAXN];//记深度和前缀和
void dfs(int x)//dfs遍历树
{
for(int i=h[x];i;i=a[i].f)
if(!d[a[i].e])
{
w[a[i].e]=(w[x] xor a[i].v);
d[a[i].e]=d[x]+;
dfs(a[i].e);
}
return;
}
struct ahh{
int nxt[];
}tr[];//Trie树
int cnt=;
int b[];//用来按位拆分
void add(int x)
{
int j=-;
memset(b,,sizeof(b));
while(x)//拆二进制
{
b[++j]=x&;
x>>=;
}
int k=;
for(int j=;j>=;--j)
{
if(!tr[k].nxt[b[j]])
tr[k].nxt[b[j]]=++cnt;
k=tr[k].nxt[b[j]];
}
return;
}
long long find(int x)//返回与x异或的最大结果
{
int j=-;
memset(b,,sizeof(b));
while(x)
{
b[++j]=x&;
x>>=;
}
long long now=;
int k=;
for(int j=;j>=;--j)
{
if(tr[k].nxt[-b[j]])//尽量往不一样的走
{
now+=(<<j);
k=tr[k].nxt[-b[j]];
}
else k=tr[k].nxt[b[j]];
}
return now;
}
int main()
{
//freopen("a.in","r",stdin);
int n=read();
for(int i=;i<n;++i)
{
int u=read(),v=read(),w=read();
con(u,v,w);//连树边
}
int s=min(,n);
d[s]=;
dfs(s);
long long ans=;
for(int i=;i<=n;++i)
add(w[i]);//加前缀和
for(int i=;i<=n;++i)
ans=max(ans,find(w[i]));//记录答案
cout<<ans;
return ;
}

「LOJ#10056」「一本通 2.3 练习 5」The XOR-longest Path (Trie的更多相关文章

  1. 「LOJ#10051」「一本通 2.3 例 3」Nikitosh 和异或(Trie

    题目描述 原题来自:CODECHEF September Challenge 2015 REBXOR 1​​≤r​1​​<l​2​​≤r​2​​≤N,x⨁yx\bigoplus yx⨁y 表示 ...

  2. LOJ#10117. 「一本通 4.1 练习 2」简单题

    LOJ#10117. 「一本通 4.1 练习 2」简单题 题目描述 题目来源:$CQOI 2006$ 有一个$n$个元素的数组,每个元素初始均为$0$.有$m$条指令,要么让其中一段连续序列数字反转— ...

  3. LOJ#10064. 「一本通 3.1 例 1」黑暗城堡

    LOJ#10064. 「一本通 3.1 例 1」黑暗城堡 题目描述 你知道黑暗城堡有$N$个房间,$M$条可以制造的双向通道,以及每条通道的长度. 城堡是树形的并且满足下面的条件: 设$D_i$为如果 ...

  4. LOJ #10131 「一本通 4.4 例 2」暗的连锁

    LOJ #10131 「一本通 4.4 例 2」暗的连锁 给一棵 \(n\) 个点的树加上 \(m\) 条非树边 , 现在需要断开一条树边和一条非树边使得图不连通 , 求方案数 . $n \le 10 ...

  5. 「LOJ#10042」「一本通 2.1 练习 8」收集雪花 (map

    题目描述 不同的雪花往往有不同的形状.在北方的同学想将雪花收集起来,作为礼物送给在南方的同学们.一共有 n 个时刻,给出每个时刻下落雪花的形状,用不同的整数表示不同的形状.在收集的过程中,同学们不希望 ...

  6. 「LOJ#10043」「一本通 2.2 例 1」剪花布条 (KMP

    题目描述 原题来自:HDU 2087 一块花布条,里面有些图案,另有一块直接可用的小饰条,里面也有一些图案.对于给定的花布条和小饰条,计算一下能从花布条中尽可能剪出几块小饰条来呢? 输入格式 输入数据 ...

  7. 「LOJ#10015」「一本通 1.2 练习 2」扩散(并查集

    题目描述 一个点每过一个单位时间就会向 444 个方向扩散一个距离,如图所示:两个点 a .b 连通,记作 e(a,b),当且仅当 a .b的扩散区域有公共部分.连通块的定义是块内的任意两个点 u.v ...

  8. #10042. 「一本通 2.1 练习 8」收集雪花 || 离散化 || 双指针法 || C++ || LOJ

    题目:#10042. 「一本通 2.1 练习 8」收集雪花 看到网上没有这道题的题解,所以写一下. 要标记数字是否存在,看到x<=1e9,所以考虑用离散化,然后开一个last数组,last[i] ...

  9. 【LOJ#6066】「2017 山东一轮集训 Day3」第二题(哈希,二分)

    [LOJ#6066]「2017 山东一轮集训 Day3」第二题(哈希,二分) 题面 LOJ 题解 要哈希是很显然的,那么就考虑哈希什么... 要找一个东西可以表示一棵树,所以我们找到了括号序列. 那么 ...

随机推荐

  1. Spring学习十二----------Bean的配置之@ImportResource和@Value

    © 版权声明:本文为博主原创文章,转载请注明出处 @ImportResource -引入XML配置文件 @Value -从配置文件中获取值 实例 1.项目结构 2.pom.xml <projec ...

  2. Django--网页管理实例解析

    此篇为代码流程的注释以及自己写的小项目的思路: 首先是项目的路由配置: urlpatterns = [ # url(r'^admin/', admin.site.urls), url(r'^yemia ...

  3. 一条长l的笔直的街道上有n个路灯,若这条街的起点为0,终点为l,第i个路灯坐标为ai,每盏灯可以覆盖到的最远距离为d,为了照明需求,所有灯的灯光必须覆盖整条街,但是为了省电,要是这个d最小,请找到这个最小的d。

    // ConsoleApplication3.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<iostream> ...

  4. zabbix 3.2.4 安装

    一.安装mysql . 安装必备组件 yum install –y autoconf automake imake libxml2-devel expat-devel cmake gcc gcc-c+ ...

  5. Ejabberd作为推送服务的优化手段(转)

    AVOS Cloud目前还在用Ejabberd做Android的消息推送服务.当时选择Ejabberd,是因为Ejabberd是一个发展很长时间的XMPP实现,并且基于Erlang,设想能在我们自主研 ...

  6. 2015 Astar Contest - Round 3 题解

    1001 数长方形 题目大意 平面内有N条平行于坐标轴的线段,且不会在端点处相交 问共形成多少个矩形 算法思路 枚举4条线段的全部组合.分别作为矩形四条边.推断是否合法 时间复杂度: O(N4) 代码 ...

  7. windows 10 python 2.7和python3.6共存解决方法和pip安装

    一.首先去python官网将两个版本下载并安装: 然后进入windows的环境变量,检查下面4个变量: 1.C:\Python272.C:\Python27\Scripts3.D:\software\ ...

  8. centOS7 安装nginx+php+mysql

    nginx安装 本文是介绍使用源码编译安装,包括具体的编译参数信息. 正式开始前,编译环境gcc g++ 开发库之类的需要提前装好. 安装make: yum -y install gcc automa ...

  9. Asp.Net中判断是否登录,及是否有权限?

    不需要在每个页面都做判段, 方法一:只需要做以下处理即可 using System; using System.Collections.Generic; using System.Linq; usin ...

  10. Hadoop实战-Flume之Sink Failover(十六)

    a1.sources = r1 a1.sinks = k1 k2 a1.channels = c1 # Describe/configure the source a1.sources.r1.type ...