题目

为了提高智商,ZJY准备去往一个新世界去旅游。这个世界的城市布局像一棵树。每两座城市之间只有一条路径可

以互达。每座城市都有一种宝石,有一定的价格。ZJY为了赚取最高利益,她会选择从A城市买入再转手卖到B城市

。由于ZJY买宝石时经常卖萌,因而凡是ZJY路过的城市,这座城市的宝石价格会上涨。让我们来算算ZJY旅游完之

后能够赚取的最大利润。(如a城市宝石价格为v,则ZJY出售价格也为v)

输入格式

第一行输入一个正整数N,表示城市个数。

接下来一行输入N个正整数表示每座城市宝石的最初价格p,每个宝石的初始价格不超过100。

第三行开始连续输入N-1行,每行有两个数字x和y。表示x城市和y城市有一条路径。城市编号从1开始。

下一行输入一个整数Q,表示询问次数。

接下来Q行,每行输入三个正整数a,b,v,表示ZJY从a旅游到b,城市宝石上涨v。

1≤ N≤50000, 1≤Q ≤50000

输出格式

对于每次询问,输出ZJY可能获得的最大利润,如果亏本则输出0。

输入样例

3

1 2 3

1 2

2 3

2

1 2 100

1 3 100

输出样例

1

1

题解

题意是树上可修改的两点间有序差值最大值

如果是序列上的话一个线段树维护左右区间最值和答案就可以分类讨论跨不跨过中点得出各个点的答案从而做到维护答案了

如果是树上的话,考虑树剖,将路径拆成了几段几段

答案要么在一段内,要么最值分别分布在两段内

我们就用每一段的答案更新答案,再单独拿出所有的\(O(logn)\)段,考虑相互影响来更新答案

细节上要注意树上路径的方向

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
#define ls (u << 1)
#define rs (u << 1 | 1)
using namespace std;
const int maxn = 50005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int h[maxn],ne = 2;
struct EDGE{int to,nxt;}ed[maxn << 1];
inline void Build(int u,int v){
ed[ne] = (EDGE){v,h[u]}; h[u] = ne++;
ed[ne] = (EDGE){u,h[v]}; h[v] = ne++;
}
int n,A[maxn];
int fa[maxn],siz[maxn],son[maxn],top[maxn],dep[maxn],id[maxn],hash[maxn],cnt;
void dfs1(int u){
siz[u] = 1;
Redge(u) if ((to = ed[k].to) != fa[u]){
fa[to] = u; dep[to] = dep[u] + 1;
dfs1(to);
siz[u] += siz[to];
if (!son[u] || siz[son[u]] < siz[to]) son[u] = to;
}
}
void dfs2(int u,int flag){
id[u] = ++cnt; hash[cnt] = u;
top[u] = flag ? top[fa[u]] : u;
if (son[u]) dfs2(son[u],true);
Redge(u) if ((to = ed[k].to) != fa[u] && to != son[u])
dfs2(to,false);
}
int mx[maxn << 2],mn[maxn << 2],d1[maxn << 2],d2[maxn << 2],tag[maxn << 2];
void upd(int u){
mx[u] = max(mx[ls],mx[rs]);
mn[u] = min(mn[ls],mn[rs]);
d1[u] = max(max(d1[ls],d1[rs]),mx[rs] - mn[ls]);
d2[u] = max(max(d2[ls],d2[rs]),mx[ls] - mn[rs]);
}
void pd(int u){
if (tag[u]){
mx[ls] += tag[u]; mn[ls] += tag[u]; tag[ls] += tag[u];
mx[rs] += tag[u]; mn[rs] += tag[u]; tag[rs] += tag[u];
tag[u] = 0;
}
}
void build(int u,int l,int r){
if (l == r){
mx[u] = mn[u] = A[hash[l]];
return;
}
int mid = l + r >> 1;
build(ls,l,mid);
build(rs,mid + 1,r);
upd(u);
}
void add(int u,int l,int r,int L,int R,int v){
if (l >= L && r <= R){
mx[u] += v; mn[u] += v; tag[u] += v;
return;
}
pd(u);
int mid = l + r >> 1;
if (mid >= L) add(ls,l,mid,L,R,v);
if (mid < R) add(rs,mid + 1,r,L,R,v);
upd(u);
}
struct node{int mx,mn,d1,d2;};
node query(int u,int l,int r,int L,int R){
if (l >= L && r <= R) return (node){mx[u],mn[u],d1[u],d2[u]};
pd(u);
int mid = l + r >> 1;
if (mid >= R) return query(ls,l,mid,L,R);
if (mid < L) return query(rs,mid + 1,r,L,R);
node t1 = query(ls,l,mid,L,R),t2 = query(rs,mid + 1,r,L,R);
return (node){max(t1.mx,t2.mx),min(t1.mn,t2.mn),max(max(t1.d1,t2.d1),t2.mx - t1.mn),max(max(t1.d2,t2.d2),t1.mx - t2.mn)};
}
node st[2][100],e[100];
int Top[2],tot;
void solve(int u,int v,int w){
int p = 0,ans = 0; Top[0] = Top[1] = 0;
while (top[u] != top[v]){
if (dep[top[u]] < dep[top[v]]){
swap(u,v);
p ^= 1;
}
add(1,1,n,id[top[u]],id[u],w);
st[p][++Top[p]] = query(1,1,n,id[top[u]],id[u]);
u = fa[top[u]];
}
p ^= 1;
if (dep[u] > dep[v]){
swap(u,v);
p ^= 1;
}
add(1,1,n,id[u],id[v],w);
st[p][++Top[p]] = query(1,1,n,id[u],id[v]);
tot = 0;
for (int i = 1; i <= Top[0]; i++){
e[++tot] = st[0][i];
ans = max(ans,e[tot].d2);
}
for (int i = Top[1]; i; i--){
e[++tot] = st[1][i];
ans = max(ans,e[tot].d1);
}
int gmin = INF;
for (int i = 1; i <= tot; i++){
ans = max(ans,e[i].mx - gmin);
gmin = min(gmin,e[i].mn);
}
printf("%d\n",ans);
}
int main(){
n = read();
REP(i,n) A[i] = read();
for (int i = 1; i < n; i++) Build(read(),read());
dfs1(1);
dfs2(1,0);
build(1,1,n);
int m = read(),a,b,w;
while (m--){
a = read(); b = read(); w = read();
solve(a,b,w);
}
return 0;
}

BZOJ3999 [TJOI2015]旅游 【树剖 + 线段树】的更多相关文章

  1. BZOJ_2157_旅游_树剖+线段树

    BZOJ_2157_旅游_树剖+线段树 Description Ray 乐忠于旅游,这次他来到了T 城.T 城是一个水上城市,一共有 N 个景点,有些景点之间会用一座桥连接.为了方便游客到达每个景点但 ...

  2. BZOJ_2238_Mst_树剖+线段树

    BZOJ_2238_Mst_树剖+线段树 Description 给出一个N个点M条边的无向带权图,以及Q个询问,每次询问在图中删掉一条边后图的最小生成树.(各询问间独立,每次询问不对之后的询问产生影 ...

  3. BZOJ_4551_[Tjoi2016&Heoi2016]树_树剖+线段树

    BZOJ_4551_[Tjoi2016&Heoi2016]树_树剖+线段树 Description 在2016年,佳媛姐姐刚刚学习了树,非常开心.现在他想解决这样一个问题:给定一颗有根树(根为 ...

  4. 【BZOJ5210】最大连通子块和 树剖线段树+动态DP

    [BZOJ5210]最大连通子块和 Description 给出一棵n个点.以1为根的有根树,点有点权.要求支持如下两种操作: M x y:将点x的点权改为y: Q x:求以x为根的子树的最大连通子块 ...

  5. [LNOI2014]LCA(树剖+线段树)

    \(\%\%\% Fading\) 此题是他第一道黑题(我的第一道黑题是蒲公英) 一直不敢开,后来发现是差分一下,将询问离线,树剖+线段树维护即可 \(Code\ Below:\) #include ...

  6. [CF1007D]Ants[2-SAT+树剖+线段树优化建图]

    题意 我们用路径 \((u, v)\) 表示一棵树上从结点 \(u\) 到结点 \(v\) 的最短路径. 给定一棵由 \(n\) 个结点构成的树.你需要用 \(m\) 种不同的颜色为这棵树的树边染色, ...

  7. LOJ#3088. 「GXOI / GZOI2019」旧词(树剖+线段树)

    题面 传送门 题解 先考虑\(k=1\)的情况,我们可以离线处理,从小到大对于每一个\(i\),令\(1\)到\(i\)的路径上每个节点权值增加\(1\),然后对于所有\(x=i\)的询问查一下\(y ...

  8. BZOJ3531-[Sdoi2014]旅行(树剖+线段树动态开点)

    传送门 完了今天才知道原来线段树的动态开点和主席树是不一样的啊 我们先考虑没有宗教信仰的限制,那么就是一个很明显的树剖+线段树,路径查询最大值以及路径和 然后有了宗教信仰的限制该怎么做呢? 先考虑暴力 ...

  9. 【bzoj4699】树上的最短路(树剖+线段树优化建图)

    题意 给你一棵 $n$ 个点 $n-1$ 条边的树,每条边有一个通过时间.此外有 $m$ 个传送条件 $(x_1,y_1,x_2,y_2,c)$,表示从 $x_1$ 到 $x_2$ 的简单路径上的点可 ...

  10. POJ3237 Tree(树剖+线段树+lazy标记)

    You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edges are numbe ...

随机推荐

  1. java设计模式——建造者模式

    一. 定义与类型 定义:将一个复杂对象的构建与它的表示分离,使用同样的构建过程可以创建不同的表示 用户只需制定需要建造的类型就可以得到它们,建造过程以及细节不需要知道 类型:创建型 建造者模式与工厂模 ...

  2. WebAppBuilder独立于portal之arcgis for js应用框架研究之二

    WAB采用ArcGIS JavaScript for API作为地图开发底层,采用Web AppBuilder作为开发框架,利用该框架即拿即用的Widget来构建应用,比如制图.查询.地理处理.编辑. ...

  3. 前端开发APP,从HBuilder开始~

    内容简介 介绍目前前端人员开发app的几种方法,具体介绍hbuilder开发app,一扇赞新的大门~ 无所不能的js 最开始js仅仅局限于网页上一些效果,操作网页内容等, 但是nodejs把js带入了 ...

  4. PAT 乙级 1017

    题目 题目地址:PAT 乙级 1017 题解 粗看是一道大数除法题,实际上只不过是通过字符数组模拟除法过程,理解之后还是比较简单的: 具体分析一下本题: 因为题设中的除数(n)是一位整数,因此大幅简化 ...

  5. 【思维题 经典模型】cf632F. Magic Matrix

    非常妙的经典模型转化啊…… You're given a matrix A of size n × n. Let's call the matrix with nonnegative elements ...

  6. tcl之list操作

  7. Codeforces Round #462 (Div. 2) D. A Determined Cleanup

    D. A Determined Cleanup time limit per test1 second memory limit per test256 megabytes Problem Descr ...

  8. P3387 【模板】缩点

    题目背景 缩点+DP 题目描述 给定一个n个点m条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大.你只需要求出这个权值和. 允许多次经过一条边或者一个点,但是,重复经过的点,权值只 ...

  9. UVA11825 Hacker's Crackdown 二进制集合+关于子集的动态规划

    题意:有N台服务器,全部服务器都直接运行着完全相同的N个任务.对于每台电脑,你都可以进行“一次”操作,使得某(自己选定)一种任务停止,且同时会使得其他和这台服务器直接相连的电脑上面相同的服务完全终止. ...

  10. ListNode Java创建链表

    用了一种自创的比较简洁的方式来创建链表 class ListNode { //为了方便,这两个变量都使用pub1ic, //存放数据的变量,直接为int型 public int data; //存放结 ...