Dynamic Rankings


Time Limit: 10 Seconds      Memory Limit: 32768 KB

The Company Dynamic Rankings has developed a new kind of computer that is no longer satisfied with the query like to simply find the k-th smallest number of the given N numbers. They have developed a more powerful system such that for N numbers a[1], a[2], ..., a[N], you can ask it like: what is the k-th smallest number of a[i], a[i+1], ..., a[j]? (For some i<=j, 0<k<=j+1-i that you have given to it). More powerful, you can even change the value of some a[i], and continue to query, all the same.

Your task is to write a program for this computer, which

- Reads N numbers from the input (1 <= N <= 50,000)

- Processes M instructions of the input (1 <= M <= 10,000). These instructions include querying the k-th smallest number of a[i], a[i+1], ..., a[j] and change some a[i] to t.

Input

The first line of the input is a single number X (0 < X <= 4), the number of the test cases of the input. Then X blocks each represent a single test case.

The first line of each block contains two integers N and M, representing N numbers and M instruction. It is followed by N lines. The (i+1)-th line represents the number a[i]. Then M lines that is in the following format

Q i j k or
C i t

It represents to query the k-th number of a[i], a[i+1], ..., a[j] and change some a[i] to t, respectively. It is guaranteed that at any time of the operation. Any number a[i] is a non-negative integer that is less than 1,000,000,000.

There're NO breakline between two continuous test cases.

Output

For each querying operation, output one integer to represent the result. (i.e. the k-th smallest number of a[i], a[i+1],..., a[j])

There're NO breakline between two continuous test cases.

Sample Input

2
5 3
3 2 1 4 7
Q 1 4 3
C 2 6
Q 2 5 3
5 3
3 2 1 4 7
Q 1 4 3
C 2 6
Q 2 5 3

Sample Output

3
6
3
6

 
 
题目链接:ZOJ 2112
突然发现用分块做很简单,每一个块维护区间内的有序序列,暴力修改+重构,查询的时候二分下答案,设当前的二分值为mid,如果区间内小于等于mid的数>=k则说明答案小于等于mid,否则答案大于mid。
代码:

#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 50010;
const int M = 10010;
const int BC = 233;
struct Block
{
int l, r;
};
Block B[M];
int arr[N], belong[N], unit, bcnt, b[N];
int n, m; void reset(int x)
{
for (int i = B[x].l; i <= B[x].r; ++i)
b[i] = arr[i];
sort(b + B[x].l, b + B[x].r + 1);
}
void init()
{
unit = sqrt(n);
bcnt = n / unit;
if (n % unit)
++bcnt;
int i;
for (i = 1; i <= bcnt; ++i)
{
B[i].l = (i - 1) * unit + 1;
B[i].r = i * unit;
}
B[bcnt].r = n;
for (i = 1; i <= n; ++i)
belong[i] = (i - 1) / unit + 1;
for (i = 1; i <= bcnt; ++i)
reset(i);
}
void update(int x, int t)
{
int bx = belong[x];
arr[x] = t;
reset(bx);
}
int bs(int x, int key)
{
int l = B[x].l, r = B[x].r;
int ans = -1;
while (l <= r)
{
int mid = MID(l, r);
if (b[mid] <= key)
{
ans = mid;
l = mid + 1;
}
else
r = mid - 1;
}
return ~ans ? ans - B[x].l + 1 : 0;
}
int query(int l, int r, int k)
{
int L = 0, R = 1e9;
int ans = 1;
int bl = belong[l], br = belong[r], i;
while (L <= R)
{
int tk = 0;
int mid = MID(L, R);
for (i = l; i <= B[bl].r; ++i)
if (arr[i] <= mid)
++tk;
for (i = B[br].l; i <= r; ++i)
if (arr[i] <= mid)
++tk;
for (i = bl + 1; i < br; ++i)
tk += bs(i, mid);
if (tk >= k)
{
ans = mid;
R = mid - 1;
}
else
L = mid + 1;
}
return ans;
}
int main(void)
{
int tcase, i;
char ops[3];
int l, r, k, x, t;
scanf("%d", &tcase);
while (tcase--)
{
scanf("%d%d", &n, &m);
for (i = 1; i <= n; ++i)
scanf("%d", &arr[i]);
init();
for (i = 1; i <= m; ++i)
{
scanf("%s", ops);
if (ops[0] == 'Q')
{
scanf("%d%d%d", &l, &r, &k);
printf("%d\n", query(l, r, k));
}
else
{
scanf("%d%d", &x, &t);
update(x, t);
}
}
}
return 0;
}

ZOJ 2112 Dynamic Rankings(带修改的区间第K大,分块+二分搜索+二分答案)的更多相关文章

  1. zoj 2112 Dynamic Rankings(主席树&amp;动态第k大)

    Dynamic Rankings Time Limit: 10 Seconds      Memory Limit: 32768 KB The Company Dynamic Rankings has ...

  2. ZOJ -2112 Dynamic Rankings 主席树 待修改的区间第K大

    Dynamic Rankings 带修改的区间第K大其实就是先和静态区间第K大的操作一样.先建立一颗主席树, 然后再在树状数组的每一个节点开线段树(其实也是主席树,共用节点), 每次修改的时候都按照树 ...

  3. ZOJ 2112 Dynamic Rankings(动态区间第 k 大+块状链表)

    题目大意 给定一个数列,编号从 1 到 n,现在有 m 个操作,操作分两类: 1. 修改数列中某个位置的数的值为 val 2. 询问 [L, R] 这个区间中第 k 大的是多少 n<=50,00 ...

  4. Dynamic Rankings——带修改区间第k大

    三种做法:1.整体二分: 二分mid 考虑小于mid的修改的影响 但是大于mid的修改可能会干掉小于mid的一些值 所以额外把一个修改变成一个值的删除和一个值的添加 这样就相互独立了! 整体二分,树状 ...

  5. 整体二分&cdq分治 ZOJ 2112 Dynamic Rankings

    题目:单点更新查询区间第k大 按照主席树的思想,要主席树套树状数组.即按照每个节点建立主席树,然后利用树状数组的方法来更新维护前缀和.然而,这样的做法在实际中并不能AC,原因即卡空间. 因此我们采用一 ...

  6. 主席树[可持久化线段树](hdu 2665 Kth number、SP 10628 Count on a tree、ZOJ 2112 Dynamic Rankings、codeforces 813E Army Creation、codeforces960F:Pathwalks )

    在今天三黑(恶意评分刷上去的那种)两紫的智推中,突然出现了P3834 [模板]可持久化线段树 1(主席树)就突然有了不详的预感2333 果然...然后我gg了!被大佬虐了! hdu 2665 Kth ...

  7. 整体二分(SP3946 K-th Number ZOJ 2112 Dynamic Rankings)

    SP3946 K-th Number (/2和>>1不一样!!) #include <algorithm> #include <bitset> #include & ...

  8. ZOJ 2112 Dynamic Rankings(主席树の动态kth)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2112 The Company Dynamic Rankings ...

  9. ZOJ 1112 Dynamic Rankings【动态区间第K大,整体二分】

    题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1112 题意: 求动态区间第K大. 分析: 把修改操作看成删除与增加 ...

随机推荐

  1. 【CF799B】T-shirt buying(一道很水的小根堆)

    点此看题面 大致题意: 有\(n\)件T恤衫,告诉你每件T恤衫的价格以及它正面和反面的颜色(\(1≤\)颜色的编号\(≤3\)),现在有m个顾客,已知每个人想要的衣服的颜色(一件T恤衫只要有一面的颜色 ...

  2. Maven 虐我千百遍,我待 Maven 如初恋

    前言 在如今的互联网项目开发当中,特别是Java领域,可以说Maven随处可见.Maven的仓库管理.依赖管理.继承和聚合等特性为项目的构建提供了一整套完善的解决方案,可以说如果你搞不懂Maven,那 ...

  3. 将指定的form表单所有输入项转为json数据

    今天学习时,看到的将form表单中的输入数据转成json 的jquery代码,直接贴出来: $.fn.serializeJson=function(){ var serializeObj={}; va ...

  4. 1005: [HNOI2008]明明的烦恼

    Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 6539  Solved: 2558[Submit][Status][Discuss] Descripti ...

  5. mysql优化之explain各参数详解:

    explain简介 explain命令可以获取Mysql如何执行select语句的信息,包括在select语句执行过程中表如何连接和连接的顺序.当我们想知道这个表操作是索引查询还是全表扫描时,我们就可 ...

  6. Nginx+proxy_cache图片缓存

    搭建图片缓存机制的原理在于减少数据库的负担并加快静态资源的响应. 步骤: 1. vim /usr/local/nginx/conf/nginx.conf 2. http{     ...     .. ...

  7. Linux-WebServer安装和配置

    Apache 基本操作 解释 命令 安装 yum install httpd 启动 service httpd start 停止 service httpd stop 启动完成后 查看进程是否存在:p ...

  8. PHP namespace、abstract、interface、trait使用介绍

    小菜鸟一枚,一直搞不懂 namespace.abstract.interface.trait 这些关系,就抽出几天时间研究,做个总结,不足之处希望大家指正交流. namespace 命名空间 介绍:顾 ...

  9. 【Ecshop】v2.7.3模板变量标签改进

    改进代码后虽可解决大多数函数参数的问题,但也同样产生了参数问题:ecshop模板函数参数有部分没有被引号包裹,所以正则并不能匹配到,要修改为引号包裹,那是个大工程. 为了使ecshop模板支持date ...

  10. VS2010官方下载地址

    http://download.microsoft.com/download/2/4/7/24733615-AA11-42E9-8883-E28CDCA88ED5/X16-42552VS2010Ult ...