题目链接


题目大意

给你几个字符串 (1<len(s)<1000) ,要你求每个字符串的回文序列个数.对于10008取模.


Solution

区间DP。

比较典型的例题。

状态定义:

令 \(f[i][j]\) 表示 \(i\) 到 \(j\) 的回文序列个数,\(s\) 为给出的字符串.

状态转移:

  1. \(s[i]\neq s[j]\)

    那么此时 \(f[i][j]\) 即为\(f[i][j-1]\),\(f[i+1][j]\)之和.

    但由于 \(i+1->j-1\)的我们明显重复统计了,所以方程即为:

\[f[i][j]=f[i+1][j]+f[i][j-1]-f[i+1][j-1]
\]



2. $s[i]=s[j]$
此时考虑,对于 $i+1$ 到 $j-1$ 每一个回文序列,我们都可以把 $s[i]$和$s[j]$ 加在两边.同时还多了 $s[i],s[j]$ 这个序列.
所以此时方程即为:
$$f[i][j]=f[i+1][j]+f[i][j-1]+1$$


### Code
```cpp
#include
using namespace std;
const int maxn=1008;
const int mod=10007;
int f[maxn][maxn];
int n,t;
char s[maxn];

int main()

{

cin>>t;

for(int k=1;k<=t;k++)

{

scanf("%s",s);

n=strlen(s);

memset(f,0,sizeof(f));

for(int i=0;i<n;i++)

{

f[i][i]=1;

if(i<n-1)

if(s[i]s[i+1])

f[i][i+1]=3;

else f[i][i+1]=2;

}

for(int len=3;len<=n;len++)

for(int l=0;l<=n-len;l++)

{

int r=l+len-1;

if(s[l]s[r])

f[l][r]=(f[l][r-1]+f[l+1][r]+1)%mod;

else

f[l][r]=(f[l][r-1]+f[l+1][r]-f[l+1][r-1]+mod)%mod;

}

printf("Case %d: %d\n",k,f[0][n-1]);

}

}

[HDU4362] Palindrome subsequence (区间DP)的更多相关文章

  1. HDU4632:Palindrome subsequence(区间DP)

    Problem Description In mathematics, a subsequence is a sequence that can be derived from another seq ...

  2. HDU 4632 Palindrome subsequence(区间dp,回文串,字符处理)

    题目 参考自博客:http://blog.csdn.net/u011498819/article/details/38356675 题意:查找这样的子回文字符串(未必连续,但是有从左向右的顺序)个数. ...

  3. HDU 4632 Palindrome subsequence (区间DP)

    题意 给定一个字符串,问有多少个回文子串(两个子串可以一样). 思路 注意到任意一个回文子序列收尾两个字符一定是相同的,于是可以区间dp,用dp[i][j]表示原字符串中[i,j]位置中出现的回文子序 ...

  4. hdu4632 Palindrome subsequence (区间dp)

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=4632 题意:求回文串子串的的个数. 思路:看转移方程就能理解了. dp[i][j] 表示区 ...

  5. HDU 4632 Palindrome subsequence(区间DP求回文子序列数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4632 题目大意:给你若干个字符串,回答每个字符串有多少个回文子序列(可以不连续的子串).解题思路: 设 ...

  6. Cheapest Palindrome(区间DP)

    个人心得:动态规划真的是够烦人的,这题好不容易写出了转移方程,结果超时,然后看题解,为什么这些题目都是这样一步一步的 递推,在我看来就是懵逼的状态,还有那个背包也是,硬是从最大的V一直到0,而这个就是 ...

  7. POJ 3280 Cheapest Palindrome(区间DP求改成回文串的最小花费)

    题目链接:http://poj.org/problem?id=3280 题目大意:给你一个字符串,你可以删除或者增加任意字符,对应有相应的花费,让你通过这些操作使得字符串变为回文串,求最小花费.解题思 ...

  8. POJ 题目3280 Cheapest Palindrome(区间DP)

    Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7148   Accepted: 34 ...

  9. Cheapest Palindrome [POJ3280] [区间DP] [经典]

    一句话题意:每个字母添加和删除都相应代价(可以任意位置 增加/删除),求把原串变成回文串的最小代价 Description 保持对所有奶牛的跟踪是一项棘手的任务,因此农场主约翰已经安装了一个系统来实现 ...

随机推荐

  1. BCB:AnsiString BSTR WideString

    WideString wstr;AnsiString astr;wchar_t *wp;//或者 BSTR wp; wp=wstr.c_bstr(); //WideString转化为BSTRwstr= ...

  2. Xcode中的Project和Target

    新创建工程(如下图e.g.),APP的属性包括了 PROJECT 和 TARGETS 两块内容.且一个工程只有一个 PROJECT,但可以有一个或多个 TARGETS(从苹果的命名上也可以看出,这个 ...

  3. Voyager如何使用Compass

    Compass由Resources,Commands,Logs三个部分组成 Resources包含了Links和Fonts: Commands可以执行php命令,比如创建model: 创建一个Down ...

  4. CentOS7 安装操作命令

    #timedatectl set-timezone Asia/Shanghai 关闭SELinux vi /etc/sysconfig/selinux #SELINUX=enforcing SELIN ...

  5. 如何用 CSS 和 D3 创作旋臂粒子动画

    效果预览 在线演示 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/xJrOqd 可交互视频 ...

  6. java中的final关键字(2013-10-11-163 写的日志迁移

     final关键字:修饰符,表示最后的.最终的    修饰类: 表示该类不能派生子类(不能被继承)   1.当不希望父类的的某个方法被子类覆盖(override)时,可以用final关键字来修饰.   ...

  7. 图解Disruptor框架(一):初识Ringbuffer

    图解Disruptor框架(一):初识Ringbuffer 概述 1. 什么是Disruptor?为什么是Disruptor? Disruptor是一个性能十分强悍的无锁高并发框架.在JUC并发包中, ...

  8. <node>……express的中间件……//

    Express是一个基于Node.js平台的web应用开发框架,在Node.js基础之上扩展了web应用开发所需要的基础功能,从而使得我们开发Web应用更加方便.更加快捷. 中间件是什么? 中间件函数 ...

  9. python中子进程不支持input()函数输入

    错误的源代码: import socketimport threadingimport multiprocessing# 创建socketserve_socket = socket.socket(so ...

  10. web安全测试---AppScan扫描工具(转)

    安全测试应该是测试中非常重要的一部分,但他常常最容易被忽视掉. 尽管国内经常出现各种安全事件,但没有真正的引起人们的注意.不管是开发还是测试都不太关注产品的安全.当然,这也不能怪我们苦B的“民工兄弟” ...