传送门

打表题……只有\(n\leq 3\)有解否则无解→_→

或者严格证明的话是这样,因为算上端点一共\(n+1\)个点,共\(\frac{n(n+1)}{2}\)个点对,所以点对之间两两距离不相等

设\(s=\frac{n(n+1)}{2}\),\(s\)已经是两个端点间的距离了。先假设\(s\)无限长,首先必须有\(s-1\),那么把木棍看成坐标轴,\(s-1\)处必有一个点(或者在\(1\)也行,不过对称,无所谓)

得有\(s-2\),如果放在\(s-2\),它和\(s-1\)的距离与\(s-1\)和\(s\)的距离相等所以肯定不行,只能放在\(2\)

得有\(s-3\),\(s-1\)和\(s-2\)之间的距离就是\(s-3\)

得有\(s-4\),它只能放在\(s-4\)的位置

然后\(s-5\)就没地方放了

发现上述步骤中每一步都是唯一的,于是这玩意儿绝对不可能太长。小范围的打表一下发现只有\(n=1,2,3\)时可行

//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R int x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
int main(){
// freopen("testdata.in","r",stdin);
int T=read();
while(T--){
int n=read();
puts(n<=3?"1":"-1");
}return 0;
}

uoj#282. 长度测量鸡(构造)的更多相关文章

  1. [UOJ 282]长度测量鸡

    Description

  2. 【uoj#282】长度测量鸡 结论题

    题目描述 给出一个长度为 $\frac{n(n+1)}2$ 的直尺,要在 $0$ 和 $\frac{n(n+1)}2$ 之间选择 $n-1$ 个刻度,使得 $1\sim \frac{n(n+1)}2$ ...

  3. [UOJ282]长度测量鸡

    思路: 数学归纳. 设最少所需刻度数为$s$,则$n和s$的关系为: $n=1,s=0;$ $n=2,s=1;$ $n=3,s=3;$ ... 观察发现$s=n(n-1)/2$,得到$sn$时,满足条 ...

  4. UOJ Goodbye Bingshen

    在叶子童鞋的推荐下打了这场比赛... 感觉被虐爆了... 怎么这么多构造题... 我还没写过呢... 交互题是毛线...看了好久没看懂...就放弃了...(我语文好差QAQ...) 最后只会T1... ...

  5. uoj#370【UR #17】滑稽树上滑稽果

    题目 低智选手果然刷不动uoj 首先考虑一下构造一棵树显然是骗你玩的,按位与这个东西越做越小,挂到链的最下面显然不会劣于挂到之前的某一个点下面,所以我们只需要求一个排列使得答案最小就好了 设\(A=\ ...

  6. uoj#283. 直径拆除鸡(构造)

    传送门 好神的构造题 vfk巨巨的题解 //minamoto #include<bits/stdc++.h> #define R register #define fp(i,a,b) fo ...

  7. UOJ Round #15 [构造 | 计数 | 异或哈希 kmp]

    UOJ Round #15 大部分题目没有AC,我只是水一下部分分的题解... 225[UR #15]奥林匹克五子棋 题意:在n*m的棋盘上构造k子棋的平局 题解: 玩一下发现k=1, k=2无解,然 ...

  8. UOJ#201. 【CTSC2016】单调上升路径 构造

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ201.html 题解 首先把题目里面的提示抄过来: 结论:假设带权无向图 G 有 100 个节点 1000 ...

  9. UOJ#460. 新年的拯救计划 构造

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ460.html 题解 本题的构造方法很多.这里只介绍一种. 首先,总边数为 $\frac{n(n-1)}2 ...

随机推荐

  1. 2016/07/11 PHP接口的介绍与实现

        接口定义了实现某种服务的一般规范,声明了所需的函数和常量,但不指定如何实现.之所以不给出实现的细节,是因为不同的实体可能需要用不同的方式来实现公共的方法定义.关键是要建立必须实现的一组一般原则 ...

  2. Vue使用axios

    main.js-------------------   import axios from "axios"; import qs from "qs"; imp ...

  3. ElasticSearch(十一)批量CURD bulk

    1.bulk语法 POST /_bulk { "delete": { "_index": "test_index", "_type ...

  4. MongoDB 学习五:索引

    这章我们介绍MongoDB的索引,用来优化查询. 索引介绍 数据库索引有些类似书的目录. 一个查询如果没有使用索引被称为表扫描,意思是它必须像阅读整本书那样去获取一个查询结果.一般来说,我们应尽量避免 ...

  5. 将css 中的16进制颜色, 转化为 rgb格式

    对dojo/_base/Color模块的注解. 源地址 https://github.com/robinxiong/dojo/blob/master/_base/Color.js function f ...

  6. Safair浏览器 时间戳转化兼容性问题。

    chrome 等浏览器支持 yyyy-MM-dd hh:mm:ss 格式,使用 Date.parse()进行转化 safair 浏览器不知道这种格式,需要将格式设置为 yyyy/MM/dd hh:mm ...

  7. Hihocoder #1095 : HIHO Drinking Game (微软苏州校招笔试)( *【二分搜索最优解】)

    #1095 : HIHO Drinking Game 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 Little Hi and Little Ho are playin ...

  8. CSU1553 Good subsequence —— 二分 + RMQ/线段树

    题目链接: http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1553 Description Give you a sequence of n n ...

  9. python生成图片

    # -*- coding:utf-8 -*- from pylab import * figure(1,figsize=(6,6)) ax = axes([0.1,0.1,0.8,0.8]) frac ...

  10. 【转】JBoss Web和 Tomcat的区别

    转载于:http://www.verydemo.com/demo_c202_i780.html JBoss Web和 Tomcat的区别 在Web2.0的浪潮中,各种页面技术和框架不断涌现,为服务器端 ...