uoj#282. 长度测量鸡(构造)
打表题……只有\(n\leq 3\)有解否则无解→_→
或者严格证明的话是这样,因为算上端点一共\(n+1\)个点,共\(\frac{n(n+1)}{2}\)个点对,所以点对之间两两距离不相等
设\(s=\frac{n(n+1)}{2}\),\(s\)已经是两个端点间的距离了。先假设\(s\)无限长,首先必须有\(s-1\),那么把木棍看成坐标轴,\(s-1\)处必有一个点(或者在\(1\)也行,不过对称,无所谓)
得有\(s-2\),如果放在\(s-2\),它和\(s-1\)的距离与\(s-1\)和\(s\)的距离相等所以肯定不行,只能放在\(2\)
得有\(s-3\),\(s-1\)和\(s-2\)之间的距离就是\(s-3\)
得有\(s-4\),它只能放在\(s-4\)的位置
然后\(s-5\)就没地方放了
发现上述步骤中每一步都是唯一的,于是这玩意儿绝对不可能太长。小范围的打表一下发现只有\(n=1,2,3\)时可行
//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R int x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
int main(){
// freopen("testdata.in","r",stdin);
int T=read();
while(T--){
int n=read();
puts(n<=3?"1":"-1");
}return 0;
}
uoj#282. 长度测量鸡(构造)的更多相关文章
- [UOJ 282]长度测量鸡
Description
- 【uoj#282】长度测量鸡 结论题
题目描述 给出一个长度为 $\frac{n(n+1)}2$ 的直尺,要在 $0$ 和 $\frac{n(n+1)}2$ 之间选择 $n-1$ 个刻度,使得 $1\sim \frac{n(n+1)}2$ ...
- [UOJ282]长度测量鸡
思路: 数学归纳. 设最少所需刻度数为$s$,则$n和s$的关系为: $n=1,s=0;$ $n=2,s=1;$ $n=3,s=3;$ ... 观察发现$s=n(n-1)/2$,得到$sn$时,满足条 ...
- UOJ Goodbye Bingshen
在叶子童鞋的推荐下打了这场比赛... 感觉被虐爆了... 怎么这么多构造题... 我还没写过呢... 交互题是毛线...看了好久没看懂...就放弃了...(我语文好差QAQ...) 最后只会T1... ...
- uoj#370【UR #17】滑稽树上滑稽果
题目 低智选手果然刷不动uoj 首先考虑一下构造一棵树显然是骗你玩的,按位与这个东西越做越小,挂到链的最下面显然不会劣于挂到之前的某一个点下面,所以我们只需要求一个排列使得答案最小就好了 设\(A=\ ...
- uoj#283. 直径拆除鸡(构造)
传送门 好神的构造题 vfk巨巨的题解 //minamoto #include<bits/stdc++.h> #define R register #define fp(i,a,b) fo ...
- UOJ Round #15 [构造 | 计数 | 异或哈希 kmp]
UOJ Round #15 大部分题目没有AC,我只是水一下部分分的题解... 225[UR #15]奥林匹克五子棋 题意:在n*m的棋盘上构造k子棋的平局 题解: 玩一下发现k=1, k=2无解,然 ...
- UOJ#201. 【CTSC2016】单调上升路径 构造
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ201.html 题解 首先把题目里面的提示抄过来: 结论:假设带权无向图 G 有 100 个节点 1000 ...
- UOJ#460. 新年的拯救计划 构造
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ460.html 题解 本题的构造方法很多.这里只介绍一种. 首先,总边数为 $\frac{n(n-1)}2 ...
随机推荐
- HBase GC日志
HBase依靠ZooKeeper来感知集群成员及其存活性.假设一个server暂停了非常长时间,它将无法给ZooKeeper quorum发送心跳信息,其他server会觉得这台server已死亡.这 ...
- 51NOD 1962 区间计数 单调栈+二分 / 线段树+扫描线
区间计数 基准时间限制:1.5 秒 空间限制:262144 KB 分值: 80 两个数列 {An} , {Bn} ,请求出Ans, Ans定义如下: Ans:=Σni=1Σnj=i[max{ ...
- c/c++预处理命令#pragma
1 #pragma pack(push, 1)和#pragma pack(pop) #pragma pack用于指定数据在内存中的对齐方式.如果不指定对齐方式的话,默认为自然对齐. 1.1 #prag ...
- Snow White,摘自iOS应用Snow White and more stories
Once upon a time, there was a land. 从前,有个国度. It was ruled by an evil queen. 它被一位邪恶的女王统治. Every day t ...
- ABAP DEMO-2018
sap Program DEMO 介绍 Program Description BALVBT01 Example SAP program for displying multiple ALV repo ...
- 1022. Fib数列
https://acm.sjtu.edu.cn/OnlineJudge/problem/1022 Description 定义Fib数列:1,1,2,3,5,8,13,…1,1,2,3,5,8,13, ...
- async函数学习笔记
含义 async函数是什么?一句话,它就是Generator函数的语法糖. const fs = require('fs') const readFile = function(fileName){ ...
- Linux系统上安装字体
最近项目中需要控制字体类型,然后就上网查了一下在linux系统上安装字体,在window上和linux上,字体要求一样,都是ttf格式,下面这是window上的字体截图 在linux系统中的/usr/ ...
- UESTC - 900 方老师炸弹 —— 割点
题目链接:https://vjudge.net/problem/UESTC-900 方老师炸弹 Time Limit: 4000/2000MS (Java/Others) Memory L ...
- 万亿级日志与行为数据存储查询技术剖析——Hbase系预聚合方案、Dremel系parquet列存储、预聚合系、Lucene系
转自:http://www.infoq.com/cn/articles/trillion-log-and-data-storage-query-techniques?utm_source=infoq& ...