BZOJ3231: [Sdoi2008]递归数列

Description

一个由自然数组成的数列按下式定义:
对于i <= kai = bi
对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k
其中bj和 cj (1<=j<=k)是给定的自然数。写一个程序,给定自然数m <= n, 计算am + am+1 + am+2 + ... + an, 并输出它除以给定自然数p的余数的值。

Input

由四行组成。
第一行是一个自然数k
第二行包含k个自然数b1, b2,...,bk
第三行包含k个自然数c1, c2,...,ck
第四行包含三个自然数mnp

Output

仅包含一行:一个正整数,表示(am + am+1 + am+2 + ... + an) mod p的值。

Sample Input

2
1 1
1 1
2 10 1000003

Sample Output

142

HINT

对于100%的测试数据:
1<= k<=15
1 <= m <= n <= 1018


题解Here!

矩阵快速幂的沙茶题。
设$Ans(l,r)=\sum_{i=l}^ra_i$。
差一下分:$Ans(l,r)=Ans(1,r)-Ans(1,l-1)$
这种题只要构造出矩阵就万事大吉了。
我们很容易想到把$a_1,a_2,a_3,...,a_k$全部放到矩阵中。
但是求和怎么办?
没事,一并放到矩阵中。
设$sum(x)=\sum_{i=1}^xa_i$。
有这个式子:$$sum(x+1)=sum(x)+a_{x+1}=sum(x)+c_1\times a_{x}+c_2\times a_{x-1}+...+c_k\times a_{x-k+1}$$
所以我们构造出矩阵长这个样:$$\left[\begin{array}{}0&0&0&...&0&c_k&c_k\\1&0&0&...&0&c_{k-1}&c_{k-1}\\0&1&0&...&0&c_{k-2}&c_{k-2}\\0&0&1&...&0&c_{k-3}&c_{k-3}\\&&&......\\0&0&0&...&1&c_1&c_1\\0&0&0&...&0&0&1\end{array}\right]$$
最初的矩阵就是这样:$$\left[\begin{array}{}a_1&a_2&a_3&...&a_k&sum(k)\end{array}\right]$$
而$a_i=b_i,i\in [1,k]$。
然后就可以愉快地跑矩阵快速幂了。
附代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#define MAXN 20
using namespace std;
long long n,m,p,k;
long long b[MAXN],c[MAXN],sum[MAXN];
struct node{
long long val[MAXN][MAXN];
node(){
for(int i=0;i<=19;i++)
for(int j=0;j<=19;j++)
val[i][j]=0;
}
friend node operator *(node x,node y){
node ret;
for(int i=1;i<=k+1;i++)
for(int j=1;j<=k+1;j++){
ret.val[i][j]=0;
for(int l=1;l<=k+1;l++){
ret.val[i][j]+=x.val[i][l]*y.val[l][j]%p;
ret.val[i][j]%=p;
}
}
return ret;
}
friend node operator ^(node x,long long w){
node s;
for(int i=1;i<=k+1;i++)s.val[i][i]=1;
while(w){
if(w&1)s=s*x;
x=x*x;
w>>=1;
}
return s;
}
}a[3];
inline long long read(){
long long date=0,w=1;char c=0;
while(c<'0'||c>'9'){if(c=='-')w=-1;c=getchar();}
while(c>='0'&&c<='9'){date=date*10+c-'0';c=getchar();}
return date*w;
}
long long solve(long long x,int id){
if(x<=k)return sum[x];
node ans;
for(int i=1;i<=k;i++)ans.val[1][i]=b[i];
ans.val[1][k+1]=sum[k];
ans=ans*(a[id]^(x-k));
return ans.val[1][k+1]%p;
}
void work(){
long long ans1=solve(n,1),ans2=solve(m-1,2);
printf("%lld\n",(ans1-ans2+p)%p);
}
void init(){
k=read();
sum[0]=0;
for(int i=1;i<=k;i++){
b[i]=read();
sum[i]=sum[i-1]+b[i];
}
for(int i=1;i<=k;i++)c[i]=read();
m=read();n=read();p=read();
a[1].val[k+1][k+1]=a[2].val[k+1][k+1]=1;
for(int i=1;i<k;i++)a[1].val[i+1][i]=a[2].val[i+1][i]=1;
for(int i=1;i<=k;i++)a[1].val[i][k]=a[1].val[i][k+1]=a[2].val[i][k]=a[2].val[i][k+1]=c[k-i+1];
}
int main(){
init();
work();
return 0;
}

BZOJ3231: [Sdoi2008]递归数列的更多相关文章

  1. [bzoj3231][SDOI2008]递归数列——矩阵乘法

    题目大意: 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj ...

  2. BZOJ-3231 [SDOI2008]递归数列

    转成矩阵连乘后,矩阵快速幂加速解决. 一开始没把需要longlong的变量补全..而且没初始化2333 #include <cstdlib> #include <cstdio> ...

  3. BZOJ 3231: [Sdoi2008]递归数列( 矩阵快速幂 )

    矩阵乘法裸题..差分一下然后用矩阵乘法+快速幂就可以了. ----------------------------------------------------------------------- ...

  4. BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法

    BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1a ...

  5. 开始玩矩阵了!先来一道入门题![SDOI2008]递归数列

    [SDOI2008]递归数列 题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + c ...

  6. 【bzoj3231】[Sdoi2008]递归数列 矩阵乘法+快速幂

    题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj  ...

  7. P2461 [SDOI2008]递归数列

    题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj 和 cj ...

  8. [luogu2461 SDOI2008] 递归数列 (矩阵乘法)

    传送门 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai- ...

  9. [SDOI2008]递归数列

    嘟嘟嘟 裸的矩阵快速幂,构造一个\((k + 1) * (k + 1)\)的矩阵,把sum[n]也放到矩阵里面就行了. #include<cstdio> #include<iostr ...

随机推荐

  1. 标准C程序设计七---71

    Linux应用             编程深入            语言编程 标准C程序设计七---经典C11程序设计    以下内容为阅读:    <标准C程序设计>(第7版) 作者 ...

  2. ThinkPHP 5.1 基础知识

    ==========================================//模板中的默认标题{$title|default='默认标题'}========================= ...

  3. php的fastcgi_finish_request()函数

    php的fastcgi_finish_request()函数 功能: 此函数冲刷(flush)所有响应的数据给客户端并结束请求. 这使得客户端结束连接后,需要大量时间运行的任务能够继续运行. 返回值: ...

  4. est6 -- Object.is()、Object.assign()、Object.defineProperty()、Symbol、Proxy

    Object.is()用来比较两个值是否严格相等.它与严格比较运算符(===)的行为基本一致,不同之处只有两个:一是+0不等于-0,二是NaN等于自身. + === - //true NaN === ...

  5. 洛谷——P2919 [USACO08NOV]守护农场Guarding the Farm

    P2919 [USACO08NOV]守护农场Guarding the Farm 题目描述 The farm has many hills upon which Farmer John would li ...

  6. HTTPS协议工作流程

    被问到了,复习一下HTTPS的工作流程 提到https,不得不提SSL SSL 1.        安全套接字(Secure Socket Layer,SSL)协议是Web浏览器与Web服务器之间安全 ...

  7. InnoDB: Warning: a long semaphore wait 解决办法

    http://blog.csdn.net/wulantian/article/details/37560849

  8. 【Jpa hibernate】一对多@OneToMany,多对一@ManyToOne的使用

    项目中使用实体之间存在一对多@OneToMany,多对一@ManyToOne的映射关系,怎么设置呢? GitHub地址:https://github.com/AngelSXD/myagenorderd ...

  9. Oracle 实例名/服务名 请问SID和Service_Name有什么区别

    可以简单的这样理解:一个公司比喻成一台服务器,数据库是这个公司中的一个部门. 1.SID:一个数据库可以有多个实例(如RAC),SID是用来标识这个数据库内部每个实例的名字, 就好像一个部门里,每个人 ...

  10. iOS -- SKViedoNode类

    SKViedoNode类 继承自 SKNode:UIResponder:NSObject 符合 NSCoding(SKNode)NSCopying(SKNode)NSObject(NSObject) ...