Rethinking the Inception Architecture for Computer Vision
https://arxiv.org/abs/1512.00567
Convolutional networks are at the core of most state-of-the-art computer vision solutions for a wide variety of tasks. Since 2014 very deep convolutional networks started to become mainstream, yielding substantial gains in various benchmarks. Although increased model size and computational cost tend to translate to immediate quality gains for most tasks (as long as enough labeled data is provided for training), computational efficiency and low parameter count are still enabling factors for various use cases such as mobile vision and big-data scenarios. Here we explore ways to scale up networks in ways that aim at utilizing the added computation as efficiently as possible by suitably factorized convolutions and aggressive regularization. We benchmark our methods on the ILSVRC 2012 classification challenge validation set demonstrate substantial gains over the state of the art: 21.2% top-1 and 5.6% top-5 error for single frame evaluation using a network with a computational cost of 5 billion multiply-adds per inference and with using less than 25 million parameters. With an ensemble of 4 models and multi-crop evaluation, we report 3.5% top-5 error on the validation set (3.6% error on the test set) and 17.3% top-1 error on the validation set.
Rethinking the Inception Architecture for Computer Vision的更多相关文章
- inception_v2版本《Rethinking the Inception Architecture for Computer Vision》(转载)
转载链接:https://www.jianshu.com/p/4e5b3e652639 Szegedy在2015年发表了论文Rethinking the Inception Architecture ...
- Rethinking the inception architecture for computer vision的 paper 相关知识
这一篇论文很不错,也很有价值;它重新思考了googLeNet的网络结构--Inception architecture,在此基础上提出了新的改进方法; 文章的一个主导目的就是:充分有效地利用compu ...
- 图像分类(三)GoogLenet Inception_v3:Rethinking the Inception Architecture for Computer Vision
Inception V3网络(注意,不是module了,而是network,包含多种Inception modules)主要是在V2基础上进行的改进,特点如下: 将滤波器尺寸(Filter Size) ...
- 【Network architecture】Rethinking the Inception Architecture for Computer Vision(inception-v3)论文解析
目录 0. paper link 1. Overview 2. Four General Design Principles 3. Factorizing Convolutions with Larg ...
- 论文笔记——Rethinking the Inception Architecture for Computer Vision
1. 论文思想 factorized convolutions and aggressive regularization. 本文给出了一些网络设计的技巧. 2. 结果 用5G的计算量和25M的参数. ...
- (转) WTF is computer vision?
WTF is computer vision? Posted Nov 13, 2016 by Devin Coldewey, Contributor Next Story Someon ...
- Analyzing The Papers Behind Facebook's Computer Vision Approach
Analyzing The Papers Behind Facebook's Computer Vision Approach Introduction You know that company c ...
- 计算机视觉和人工智能的状态:我们已经走得很远了 The state of Computer Vision and AI: we are really, really far away.
The picture above is funny. But for me it is also one of those examples that make me sad about the o ...
- Computer Vision Tutorials from Conferences (3) -- CVPR
CVPR 2013 (http://www.pamitc.org/cvpr13/tutorials.php) Foundations of Spatial SpectroscopyJames Cogg ...
随机推荐
- bq25896 IINDPM 及 無 IINDPM 時的 regsiter
無 IINDPM status 有 IINDPM status [bq25890 reg@][0x0]=0x5d[0x1]=0x6[0x2]=0x91[0x3]=0x1a[0x4]=0x8[0 ...
- react的key值的作用
因为在reactelement中有一个属性是key,该属性默认是为空值,所以一般情况下,只要组件不加上key值,react是不会去校验组件的key,而是直接采用diff算法进行对比,一旦组件加上了ke ...
- js 路径改变时获取url参数
当我们在使用react或vue的router作路由跳转时,为了保持菜单与地址栏状态一致,我们可以使用window.onhashchange捕获#后面的变化 window.onhashchange = ...
- 洛谷——P2737 [USACO4.1]麦香牛块Beef McNuggets
https://www.luogu.org/problemnew/show/P2737 题目描述 农夫布朗的奶牛们正在进行斗争,因为它们听说麦当劳正在考虑引进一种新产品:麦香牛块.奶牛们正在想尽一切办 ...
- Codeforces 622F The Sum of the k-th Powers
Discription There are well-known formulas: , , . Also mathematicians found similar formulas for high ...
- win7 x64 dtrace
1.下载WINDOW DTRACE 工具 https://github.com/prash-wghats/DTrace-win32 2.系统参数修改 bcdedit/set testsigning o ...
- iOS真机测试,为Provisioning添加设备
------------添加设备到provisioning------------- 1,登陆https://developer.apple.com/devcenter/ios/index.actio ...
- vbox在共享文件夹设置链接报错Protocol error问题
环境: 基于VBox 的 vagrant (centos版本)开发环境. 问题: Virtualbox 虚拟机(centOS)中,在进行go程序编译的时候,需要设置一个链接符,然后得到了如下的错误: ...
- sublime的tab和spaces空格切换的坑
python是严格要求对齐或者叫缩进的: 使用sublime对python进行编程时,可以使用tab或者空格,但是不能混用.特别是从外面把代码拷贝进sublime的时候,更要注意是否一致. 简单介绍一 ...
- centos 升级内核失败回救
在升级 centos6.3上使用, yum -y update ... 灾难出现了!!! 解决方法: 1. 在机器启动的时候, 按F1, 会出现选择内核,选一个原来的. 2. vim /etc/gr ...