https://www.luogu.org/problemnew/show/P2424

记 \(\sigma(n)\) 为n的所有约数之和,例如 \(\sigma(6)=1+2+3+6=12\) .

求 \(ans(n)=\sum\limits_{i=x}^{y}\sigma(i)\) .

首先,记 \(f(n)=\sum\limits_{i=1}^{n}\sigma(i)\) ,则 \(ans(n)=f(y)-f(x-1)\) .

对于 \(f(n)=\sum\limits_{i=1}^{n}\sigma(i)\) ,一个直接的做法是枚举i然后枚举i的因子求和,显然会TLE.

考虑直接枚举因子,易知 \(n\) 以内 \(d\) 的一共有 \(\lfloor\frac{n}{d}\rfloor\) 个,

则有 $f(n)=\sum\limits_{d=1}^{n} d * \lfloor\frac{n}{d}\rfloor $ ,类似的形式在余数求和中见过,直接复制:

记 $ c= \lfloor\frac{n}{d}\rfloor $ 则每段 \(d\) 对应相同的一个 \(c\)

import java.io.*;
import java.util.*;
import java.math.*; public class Main {
public static void solve(Scanner cin,PrintStream cout){
while(cin.hasNext()){
long x=cin.nextLong(),y=cin.nextLong();
cout.println(sumfenkuai(y)-sumfenkuai(x-1));
}
} public static long sumfenkuai(long n){
long ans=0;
for(long l=1,r; l<=n; l=r+1) {
if(n/l!=0) {
r=Math.min(n/(n/l),n);
} else {
//n/l==0,意味着l>n,所有的后面的下整都是0,分成同一块
r=n;
break;
} //d={l,l+1,...r}
//sum(d)=(l+r)*(r-l+1)/2
//c=n/l=n/r //ans=sum_d=1^n:(sum(d)*c)
ans+=(n/l)*(r-l+1)*(l+r)/2;
}
return ans;
} public static void main(String[] args) {
//setFileIO("D://test");
Scanner cin=new Scanner(System.in);
PrintStream cout=new PrintStream(System.out); solve(cin,cout); cin.close();
cout.close();
} public static void FileIO(String filename){
FileInputStream fis = null;
try {
fis = new FileInputStream(filename+".in");
} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} System.setIn(fis); PrintStream ps = null;
try {
ps = new PrintStream(new FileOutputStream(filename+".out"));
} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
System.setOut(ps);
}
}

洛谷 - P2424 - 约数和 - 整除分块的更多相关文章

  1. 洛谷P3935 Calculating(整除分块)

    题目链接:洛谷 题目大意:定义 $f(x)=\prod^n_{i=1}(k_i+1)$,其中 $x$ 分解质因数结果为 $x=\prod^n_{i=1}{p_i}^{k_i}$.求 $\sum^r_{ ...

  2. 洛谷 P2424 约数和

    题目背景 Smart最近沉迷于对约数的研究中. 题目描述 对于一个数X,函数f(X)表示X所有约数的和.例如:f(6)=1+2+3+6=12.对于一个X,Smart可以很快的算出f(X).现在的问题是 ...

  3. 洛谷 - P4450 - 双亲数 - 整除分块

    https://www.luogu.org/fe/problem/P4450 应该不分块也可以. 求\(F(n,m,d)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^ ...

  4. 洛谷—— P2424 约数和

    https://www.luogu.org/problem/show?pid=2424 题目背景 Smart最近沉迷于对约数的研究中. 题目描述 对于一个数X,函数f(X)表示X所有约数的和.例如:f ...

  5. 洛谷P2424 约数和 题解

    题目 约数和 题解 此题可以说完全就是一道数学题,不难看出这道题所求的是 \(\sum\limits_{i=x}^{y}{\sum\limits_{d|i}{d}}\) 的值. 很显然,用暴力枚举肯定 ...

  6. 莫队 [洛谷2709] 小B的询问[洛谷1903]【模板】分块/带修改莫队(数颜色)

    莫队--------一个优雅的暴力 莫队是一个可以在O(n√n)内求出绝大部分无修改的离线的区间问题的答案(只要问题满足转移是O(1)的)即你已知区间[l,r]的解,能在O(1)的时间内求出[l-1, ...

  7. 洛谷P3396 哈希冲突 (分块)

    洛谷P3396 哈希冲突 题目背景 此题约为NOIP提高组Day2T2难度. 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣. ...

  8. 洛谷 [SDOI2015]约数个数和 解题报告

    [SDOI2015]约数个数和 题目描述 设\(d(x)\)为\(x\)的约数个数,给定\(N,M\),求$ \sum\limits^N_{i=1}\sum\limits^M_{j=1}d(ij)$ ...

  9. 洛谷 - P1403 - 约数研究 - 数论

    https://www.luogu.org/problemnew/show/P1403 可以直接用线性筛约数个数求出来,但实际上n以内i的倍数的个数为n/i的下整,要求的其实是 $$\sum\limi ...

随机推荐

  1. poj3040(双向贪心)

    Allowance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1540   Accepted: 637 Descript ...

  2. Linux机器间ssh免密登录

    前言 一台Linux机器通过ssh的方式连接别的机器或通过scp的方式传输文件,都需要输入密码. 为了解决每次输入密码的困扰,可采用添加密钥的方式实现. 实现过程 源服务器A,目标服务器B. 1.在源 ...

  3. MongoDB 操作手冊CRUD 事务 两步提交

    运行两步提交 概述 这部分提供了多记录更新或者多记录事务.使用两步提交来完毕多记录写入的模板. 另外.能够扩展此方法来提供rollback-like功能. 背景 MongoDB对于单条记录的操作是原子 ...

  4. android Material

    目前已经两个团队做了不错的翻译 http://design.1sters.com/ http://www.ui.cn/Material/ https://github.com/stormzhang/9 ...

  5. c# winform窗体间的传值

    说明:本文讲解两个窗体之间的传值,主要用到两个窗体,form1,form2 1.在form1窗体单击按钮,打开窗体form2,然后把form2中文本框的值传递给form1 form1中的代码: usi ...

  6. netty+Protobuf (整合一)

    netty+Protobuf 整合实战 疯狂创客圈 死磕Netty 亿级流量架构系列之12 [博客园 总入口 ] 本文说明 本篇是 netty+Protobuf 整合实战的 第一篇,完成一个 基于Ne ...

  7. Java HotSpot(TM) 64-Bit Server VM warning: Insufficient space for shared memory file...

    Java HotSpot(TM) 64-Bit Server VM warning: Insufficient space for shared memory file: 把tomcat中的日志删除, ...

  8. [haoi2014]穿越封锁线

    这题需要注意的一点是射线法需要考虑边界,而且题目对边界的限制极为严格. dcmp(v[i%n].x-x)<=0&&dcmp(v[(i+1)%n].x-x)>0 dcmp(v ...

  9. jquery特效(5)—轮播图③(鼠标悬浮停止轮播)

    今天很无聊,就接着写轮播图了,需要说明一下,这次的轮播图是在上次随笔中jquery特效(3)—轮播图①(手动点击轮播)和jquery特效(4)—轮播图②(定时自动轮播)的基础上写出来的,也就是本次随笔 ...

  10. zkui部署

    1.拉取代码 #git clone https://github.com/DeemOpen/zkui.git 2.构建并安装程序 #cd zkui/ #yum install -y maven #mv ...