【版权声明:尊重原创。转载请保留出处:blog.csdn.net/shallnet,文章仅供学习交流,请勿用于商业用途】

操作系统负责管理硬件设备。为了使系统和硬件设备的协同工作不减少机器性能。系统和硬件的通信使用中断的机制,也就是让硬件在须要的时候向内核发出信号,这样使得内核不用去轮询设备而导致做非常多无用功。

        中断使得硬件能够发出通知给处理器。硬件设备生成中断的时候并不考虑与处理器的时钟同步,中断能够随时产生。

也就是说,内核随时可能由于新到来的中断而被打断。

当接收到一个中断后,中断控制器会给处理器发送一个电信号,处理器检測到该信号便中断自己当前工作而处理中断。

        在响应一个中断时。内核会运行一个函数,该函数叫做中断处理程序或中断服务例程(ISR)。

中断处理程序运行与中断上下文,中断上下文中运行的代码不可堵塞,应该高速运行,这样才干保证尽快恢复被中断的代码的运行。中断处理程序是管理硬件驱动的驱动程序的组成部分,假设设备使用中断。那么对应的驱动程序就注冊一个中断处理程序。

        在驱动程序中,通常使用request_irq()来注冊中断处理程序。该函数在文件<include/linux/interrupt.h>中声明:
extern int __must_check
request_irq(unsigned int irq, irq_handler_t handler, unsigned long flags,
const char *name, void *dev);
第一个參数为要分配的中断号;第二个參数为指向中断处理程序的指针。第三个參数为中断处理标志。该函数实现例如以下:
static inline int __must_check
request_irq(unsigned int irq, irq_handler_t handler, unsigned long flags,
const char *name, void *dev)
{
return request_threaded_irq(irq, handler, NULL, flags, name, dev);
} int request_threaded_irq(unsigned int irq, irq_handler_t handler,
irq_handler_t thread_fn, unsigned long irqflags,
const char *devname, void *dev_id)
{
struct irqaction *action;
struct irq_desc *desc;
int retval;
/*
* handle_IRQ_event() always ignores IRQF_DISABLED except for
* the _first_ irqaction (sigh). That can cause oopsing, but
* the behavior is classified as "will not fix" so we need to
* start nudging drivers away from using that idiom.
*/
if ((irqflags & (IRQF_SHARED|IRQF_DISABLED)) ==
(IRQF_SHARED|IRQF_DISABLED)) {
pr_warning(
"IRQ %d/%s: IRQF_DISABLED is not guaranteed on shared IRQs\n",
irq, devname);
}
#ifdef CONFIG_LOCKDEP
/*
* Lockdep wants atomic interrupt handlers:
*/
irqflags |= IRQF_DISABLED;
#endif
/*
* Sanity-check: shared interrupts must pass in a real dev-ID,
* otherwise we'll have trouble later trying to figure out
* which interrupt is which (messes up the interrupt freeing
* logic etc).
*/
if ((irqflags & IRQF_SHARED) && !dev_id)
return -EINVAL;
desc = irq_to_desc(irq);
if (!desc)
return -EINVAL;
if (desc->status & IRQ_NOREQUEST)
return -EINVAL;
if (!handler) {
if (!thread_fn)
return -EINVAL;
handler = irq_default_primary_handler;
}
//分配一个irqaction
action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
if (!action)
return -ENOMEM;
action->handler = handler;
action->thread_fn = thread_fn;
action->flags = irqflags;
action->name = devname;
action->dev_id = dev_id;
chip_bus_lock(irq, desc); //将创建并初始化完在的action增加desc
retval = __setup_irq(irq, desc, action);
chip_bus_sync_unlock(irq, desc);
if (retval)
kfree(action);
#ifdef CONFIG_DEBUG_SHIRQ
if (irqflags & IRQF_SHARED) {
/*
* It's a shared IRQ -- the driver ought to be prepared for it
* to happen immediately, so let's make sure....
* We disable the irq to make sure that a 'real' IRQ doesn't
* run in parallel with our fake.
*/
unsigned long flags;
disable_irq(irq);
local_irq_save(flags);
handler(irq, dev_id);
local_irq_restore(flags);
enable_irq(irq);
}
#endif
return retval;
}
以下看一下中断处理程序的实例,以rtc驱动程序为例,代码位于<drivers/char/rtc.c>中。当RTC驱动装载时,rtc_init()函数会被调用来初始化驱动程序。包含注冊中断处理函数:
    /*
* XXX Interrupt pin #7 in Espresso is shared between RTC and
* PCI Slot 2 INTA# (and some INTx# in Slot 1).
*/
if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
(void *)&rtc_port)) {
rtc_has_irq = 0;
printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
return -EIO;
}
处理程序函数rtc_interrupt():
/*
* A very tiny interrupt handler. It runs with IRQF_DISABLED set,
* but there is possibility of conflicting with the set_rtc_mmss()
* call (the rtc irq and the timer irq can easily run at the same
* time in two different CPUs). So we need to serialize
* accesses to the chip with the rtc_lock spinlock that each
* architecture should implement in the timer code.
* (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
*/
static irqreturn_t rtc_interrupt(int irq, void *dev_id)
{
/*
* Can be an alarm interrupt, update complete interrupt,
* or a periodic interrupt. We store the status in the
* low byte and the number of interrupts received since
* the last read in the remainder of rtc_irq_data.
*/
spin_lock(&rtc_lock); //保证rtc_irq_data不被SMP机器上其它处理器同一时候訪问
rtc_irq_data += 0x100;
rtc_irq_data &= ~0xff;
if (is_hpet_enabled()) {
/*
* In this case it is HPET RTC interrupt handler
* calling us, with the interrupt information
* passed as arg1, instead of irq.
*/
rtc_irq_data |= (unsigned long)irq & 0xF0;
} else {
rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
}
if (rtc_status & RTC_TIMER_ON)
mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
spin_unlock(&rtc_lock);
/* Now do the rest of the actions */
spin_lock(&rtc_task_lock); //避免rtc_callback出现系统情况,RTC驱动同意注冊一个回调函数在每一个RTC中断到来时运行。
if (rtc_callback)
rtc_callback->func(rtc_callback->private_data);
spin_unlock(&rtc_task_lock);
wake_up_interruptible(&rtc_wait);
kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
return IRQ_HANDLED;
}
        在内核中,中断的旅程開始于提前定义入口点,这类似于系统调用。

对于每条中断线。处理器都会跳到相应的一个唯一的位置。这样,内核就能够知道所接收中断的IRQ号了。初始入口点仅仅是在栈中保存这个号,并存放当前寄存器的值(这些值属于被中断的任务);然后,内核调用函数do_IRQ().从这里開始。大多数中断处理代码是用C写的。

do_IRQ()的声明例如以下:

unsigned int do_IRQ(struct pt_regs regs)
       由于C的调用惯例是要把函数參数放在栈的顶部。因此pt_regs结构包括原始寄存器的值,这些值是曾经在汇编入口例程中保存在栈上的。中断的值也会得以保存,所以,do_IRQ()能够将它提取出来,X86的代码为:
int irq = regs.orig_eax & 0xff
       计算出中断号后,do_IRQ()对所接收的中断进行应答,禁止这条线上的中断传递。在普通的PC机器上,这些操作是由mask_and_ack_8259A()来完毕的,该函数由do_IRQ()调用。接下来,do_IRQ()须要确保在这条中断线上有一个有效的处理程序,并且这个程序已经启动可是当前没有执行。假设这种话, do_IRQ()就调用handle_IRQ_event()来执行为这条中断线所安装的中断处理程序,函数位于<kernel/irq/handle.c>:
/**
* handle_IRQ_event - irq action chain handler
* @irq: the interrupt number
* @action: the interrupt action chain for this irq
*
* Handles the action chain of an irq event
*/
irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
{
irqreturn_t ret, retval = IRQ_NONE;
unsigned int status = 0; //假设没有设置IRQF_DISABLED。将CPU中断打开。应该尽量避免中断关闭情况,本地中断关闭情况下会导致中断丢失。
if (!(action->flags & IRQF_DISABLED))
local_irq_enable_in_hardirq(); do { //遍历执行中断处理程序
trace_irq_handler_entry(irq, action);
ret = action->handler(irq, action->dev_id);
trace_irq_handler_exit(irq, action, ret); switch (ret) {
case IRQ_WAKE_THREAD:
/*
* Set result to handled so the spurious check
* does not trigger.
*/
ret = IRQ_HANDLED; /*
* Catch drivers which return WAKE_THREAD but
* did not set up a thread function
*/
if (unlikely(!action->thread_fn)) {
warn_no_thread(irq, action);
break;
} /*
* Wake up the handler thread for this
* action. In case the thread crashed and was
* killed we just pretend that we handled the
* interrupt. The hardirq handler above has
* disabled the device interrupt, so no irq
* storm is lurking.
*/
if (likely(!test_bit(IRQTF_DIED,
&action->thread_flags))) {
set_bit(IRQTF_RUNTHREAD, &action->thread_flags);
wake_up_process(action->thread);
}
/* Fall through to add to randomness */
case IRQ_HANDLED:
status |= action->flags;
break; default:
break;
} retval |= ret;
action = action->next;
} while (action); if (status & IRQF_SAMPLE_RANDOM)
add_interrupt_randomness(irq);
local_irq_disable();//关中断 return retval;
}
         前面说到中断应该尽快运行完,以保证被中断代码可以尽快的恢复运行。但其实中断通常有非常多工作要做。包含应答、重设硬件、数据拷贝、处理请求、发送请求等。

为了求得平衡,内核把中断处理工作分成两半。中断处理程序是上半部——接收到中断就開始运行。可以稍后完毕的工作推迟到下半部操作,下半部在合适的时机被开中段运行。比如网卡收到数据包时马上发出中断,内核运行网卡已注冊的中断处理程序,此处工作就是通知硬件拷贝最新的网络数据包到内存,然后将控制权交换给系统之前被中断的任务,其它的如处理和操作数据包等任务被放到随后的下半部中去运行。

下一节我们将了解中断处理的下半部。



把握linux内核设计思想(二):硬中断及中断处理的更多相关文章

  1. 把握linux内核设计思想系列【转】

    转自:http://blog.csdn.net/shallnet/article/details/47734053 版权声明:本文为博主原创文章,未经博主允许不得转载.如果您觉得文章对您有用,请点击文 ...

  2. 把握linux内核设计思想系列

    [版权声明:尊重原创,转载请保留出处:blog.csdn.net/shallnet,文章仅供学习交流,请勿用于商业用途] 本专栏分析linux内核的设计实现,包含系统调用.中断.下半部机制.时间管理. ...

  3. 把握linux内核设计思想(三):下半部机制之软中断

    [版权声明:尊重原创.转载请保留出处:blog.csdn.net/shallnet,文章仅供学习交流,请勿用于商业用途]         中断处理程序以异步方式执行,其会打断其它重要代码,其执行时该中 ...

  4. 把握linux内核设计思想(十三):内存管理之进程地址空间

    [版权声明:尊重原创,转载请保留出处:blog.csdn.net/shallnet.文章仅供学习交流,请勿用于商业用途] 进程地址空间由进程可寻址的虚拟内存组成,Linux 的虚拟地址空间为0~4G字 ...

  5. 把握linux内核设计思想(十二):内存管理之slab分配器

    [版权声明:尊重原创,转载请保留出处:blog.csdn.net/shallnet,文章仅供学习交流.请勿用于商业用途] 上一节最后说到对于小内存区的请求,假设採用伙伴系统来进行分配,则会在页内产生非 ...

  6. 把握linux内核设计思想(七):内核定时器和定时运行

    [版权声明:尊重原创,转载请保留出处:blog.csdn.net/shallnet,文章仅供学习交流,请勿用于商业用途]         前面章节说到了把工作推后到除如今以外的时间运行的机制是下半部机 ...

  7. 把握linux内核设计思想(五):下半部机制之工作队列及几种机制的选择

    [版权声明:尊重原创.转载请保留出处:blog.csdn.net/shallnet,文章仅供学习交流,请勿用于商业用途]         工作队列是下半部的第二种将工作推后运行形式.和软中断.task ...

  8. 《linux内核设计与实现》读书笔记第一、二章

    第一章 Linux内核简介 1.1 Unix的历史 1971年,Unix被移植到PDP-11型机中. 1973年,Unix操作系统用C语言改写——为Unix系统的广泛移植铺平了道路. 1977年,伯克 ...

  9. 《Linux内核设计与实现》 第一二章学习笔记

    <Linux内核设计与实现> 第一二章学习笔记 第一章 Linux内核简介 1.1 Unix的历史 Unix的特点 Unix很简洁,所提供的系统调用都有很明确的设计目的. Unix中一切皆 ...

随机推荐

  1. VMWare VMNet 8 的配置使用

    网上有很多讲解VMWare网络原理的文章,我在这里就不在赘述,有兴趣的朋友可以自己搜 本章主要介绍下我们使用VM最常用的两种网络模式,VMNet 0 和 VMNet 8 本文均为原创,如需转载请标明, ...

  2. regression

    单变量线性回归univariate linear regression 代价函数square error cost function : \(J(\theta)=\frac{1}{2m}\sum_{i ...

  3. bzoj 2741 [FOTILE模拟赛] L

    Description 多个询问l,r,求所有子区间异或和中最大是多少 强制在线 Solution 分块+可持久化trie 1.对于每块的左端点L,预处理出L到任意一个i,[L,j] 间所有子区间异或 ...

  4. hdu 3535 背包综合题

    /* 有n组背包,每组都有限制 0.至少选一项 1.最多选一项 2.任意选 */ #include <iostream> #include <cstdio> #include ...

  5. onbeforeunload 的使用

    原文发布时间为:2008-10-20 -- 来源于本人的百度文章 [由搬家工具导入] onbeforeunload 可以在页面关闭,刷新,跳转时弹出提示信息,防止意外的跳转使得当前页的表单内容被清空。 ...

  6. pyspider 爬虫教程(一):HTML 和 CSS 选择器

      虽然以前写过 如何抓取WEB页面 和 如何从 WEB 页面中提取信息.但是感觉还是需要一篇 step by step 的教程,不然没有一个总体的认识.不过,没想到这个教程居然会变成一篇译文,在这个 ...

  7. 【HugeChm】HugeChm制作chm帮助文档

    1.下载软件:HugeChm.exe 2.开始打包:  3.选择开始打包即可

  8. 编译程序加不加 -lpthread 的区别【转】

    转自:http://www.cnblogs.com/Swartz/articles/3939382.html 作者:Lokki 出处:http://www.cnblogs.com/Swartz/ 欢迎 ...

  9. android的布局-----TableLayout(表格布局)

    学习导图 (1)TableLayout的相关简介 java的swing编程和html中经常会使用到表格,可见表格的应用开发中使用还是比较多的,同样android也为我们提供这样的布局方式. (2)如何 ...

  10. Shell 括号辨识(转http://blog.csdn.net/taiyang1987912/article/details/39551385)

    一.小括号,圆括号() 1.单小括号 ()    ①命令组.括号中的命令将会新开一个子shell顺序执行,所以括号中的变量不能够被脚本余下的部分使用.括号中多个命令之间用分号隔开,最后一个命令可以没有 ...