Marriage Match IV

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 2470    Accepted Submission(s): 742

Problem Description
Do not sincere non-interference。

Like that show, now starvae also take part in a show, but it take place between city A and B. Starvae is in city A and girls are in city B. Every time starvae can get to city B and make a data with a girl he likes. But there are two problems with it, one is
starvae must get to B within least time, it's said that he must take a shortest path. Other is no road can be taken more than once. While the city starvae passed away can been taken more than once. 





So, under a good RP, starvae may have many chances to get to city B. But he don't know how many chances at most he can make a data with the girl he likes . Could you help starvae?
 
Input
The first line is an integer T indicating the case number.(1<=T<=65)

For each case,there are two integer n and m in the first line ( 2<=n<=1000, 0<=m<=100000 ) ,n is the number of the city and m is the number of the roads.



Then follows m line ,each line have three integers a,b,c,(1<=a,b<=n,0<c<=1000)it means there is a road from a to b and it's distance is c, while there may have no road from b to a. There may have a road from a to a,but you can ignore it. If there are two roads
from a to b, they are different.



At last is a line with two integer A and B(1<=A,B<=N,A!=B), means the number of city A and city B.

There may be some blank line between each case.
 
Output
Output a line with a integer, means the chances starvae can get at most.
 
Sample Input
3
7 8
1 2 1
1 3 1
2 4 1
3 4 1
4 5 1
4 6 1
5 7 1
6 7 1
1 7 6 7
1 2 1
2 3 1
1 3 3
3 4 1
3 5 1
4 6 1
5 6 1
1 6 2 2
1 2 1
1 2 2
1 2
 
Sample Output
2
1
1
 
Author
starvae@HDU
 
Source


题意:
给出一张无向图,要求图上的不相交得最短路条数。

思路:
先求出单源最短路,从终点往起点倒着搜出最短路上的边(能够用双向链表)。然后另这些边的容量为1建新图。跑一遍最大流就可以。


#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std; #define N 1010
#define M 101000
const int INF = 1000000000; int n, m, sp, tp, cnte, cnte2, head[N], lowdis[N], head2[N], dep[N], tail[N];
bool vis[N]; class Edge
{
public:
int u, v, w, next, next2;
};
Edge edge1[M*2], edge2[M*2]; void addEdge1(int u, int v, int w)
{
edge1[cnte].u = u; edge1[cnte].v = v;
edge1[cnte].w = w; edge1[cnte].next = head[u];
head[u] = cnte;
edge1[cnte].next2 = tail[v];
tail[v] = cnte++;
}
void addEdge2(int u, int v, int w)
{
edge2[cnte2].u = u; edge2[cnte2].v = v;
edge2[cnte2].w = w; edge2[cnte2].next = head2[u];
head2[u] = cnte2++; edge2[cnte2].v = u; edge2[cnte2].u = v;
edge2[cnte2].w = 0; edge2[cnte2].next = head2[v];
head2[v] = cnte2++;
} int spfa()
{
queue<int> q;
for(int i = 1; i <= n; i++)
{
vis[i] = 0;
lowdis[i] = INF;
}
vis[sp] = 1; lowdis[sp] = 0;
q.push(sp);
while(!q.empty())
{
int cur = q.front();
q.pop(); vis[cur] = 0;
for(int i = head[cur]; i != -1; i = edge1[i].next)
{
int v = edge1[i].v;
if(lowdis[v] > lowdis[cur]+edge1[i].w)
{
lowdis[v] = lowdis[cur]+edge1[i].w; if(!vis[v])
{
vis[v] = 1;
q.push(v);
}
}
}
}
return lowdis[tp] != INF;
} void dfs(int cur)
{
for(int i = tail[cur]; i != -1; i = edge1[i].next2)
{
int u = edge1[i].u;
if(lowdis[u]+edge1[i].w == lowdis[cur])
{
addEdge2(u, cur, 1);
if(!vis[u])
{
vis[u] = 1;
dfs(u);
}
}
}
} bool bfs()
{
memset(vis, 0, sizeof vis);
memset(dep, -1, sizeof dep);
queue<int> q;
q.push(sp);
vis[sp] = 1;
dep[sp] = 1;
while(!q.empty())
{
int cur = q.front();
q.pop(); for(int i = head2[cur]; i != -1; i = edge2[i].next)
{
int v = edge2[i].v;
if(!vis[v] && edge2[i].w > 0)
{
dep[v] = dep[cur]+1;
vis[v] = 1;
q.push(v);
}
}
} return dep[tp] != -1;
} int dfs2(int cur, int flow)
{
if(cur == tp) return flow;
int res = 0;
for(int i = head2[cur]; i != -1 && flow > res; i = edge2[i].next)
{
int v = edge2[i].v;
if(edge2[i].w > 0 && dep[v] == dep[cur]+1)
{
int x = min(edge2[i].w, flow-res);
int f = dfs2(v, x);
edge2[i].w-=f;
edge2[i^1].w+=f;
res += f;
}
} if(!res) dep[cur] = -1;
return res;
} int dinic()
{
int res = 0;
while(bfs())
{
int t;
while(t = dfs2(sp, INF))
{
res += t;
}
}
return res;
} int main()
{
//freopen("C:\\Users\\Admin\\Desktop\\in.txt", "r", stdin);
int t; scanf("%d", &t);
while(t--)
{
cnte = 0;
cnte2 = 0;
memset(head, -1, sizeof head);
memset(head2, -1, sizeof head2);
memset(tail, -1, sizeof tail);
int u, v, w;
scanf("%d%d", &n, &m);
for(int i = 0; i < m; i++)
{
scanf("%d%d%d", &u, &v, &w);
addEdge1(u, v, w);
}
scanf("%d%d", &sp, &tp);
int ans;
if(!spfa()) ans = 0;
else
{
dfs(tp);
ans = dinic();
}
printf("%d\n", ans);
}
return 0;
}

HDU 3416的更多相关文章

  1. HDU 3416 Marriage Match IV (最短路径,网络流,最大流)

    HDU 3416 Marriage Match IV (最短路径,网络流,最大流) Description Do not sincere non-interference. Like that sho ...

  2. hdu 3416 Marriage Match IV (最短路+最大流)

    hdu 3416 Marriage Match IV Description Do not sincere non-interference. Like that show, now starvae ...

  3. HDU 3416:Marriage Match IV(最短路+最大流)

    http://acm.hdu.edu.cn/showproblem.php?pid=3416 题意:给出n个点m条边,边信息分别是两个端点和一个费用,再给出一个起点和一个终点,问从起点到终点的完全不相 ...

  4. HDU 3416 Marriage Match IV (求最短路的条数,最大流)

    Marriage Match IV 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/Q Description Do not si ...

  5. hdu 3081 hdu 3277 hdu 3416 Marriage Match II III IV //灵活运用最大流量

    3081 意甲冠军: n女生选择不吵架,他甚至男孩边(他的朋友也算.并为您收集过程).2二分图,一些副作用,有几个追求完美搭配(每场比赛没有重复的每一个点的比赛) 后.每次增广一单位,(一次完美匹配) ...

  6. hdu 3081 hdu 3277 hdu 3416 Marriage Match II III IV //最大流的灵活运用

    3081 题意: n个女孩选择没有与自己吵过架的男孩有连边(自己的朋友也算,并查集处理),2分图,有些边,求有几种完美匹配(每次匹配每个点都不重复匹配) 我是建二分图后,每次增广一单位,(一次完美匹配 ...

  7. HDU 3416 Marriage Match IV dij+dinic

    题意:给你n个点,m条边的图(有向图,记住一定是有向图),给定起点和终点,问你从起点到终点有几条不同的最短路 分析:不同的最短路,即一条边也不能相同,然后刚开始我的想法是找到一条删一条,然后光荣TLE ...

  8. O - Marriage Match IV - hdu 3416(最短路+最大流)

    题目大意:在城市A的男孩想去城市B的女孩,不过他去城市B必须走最短路,并且走过的路不可以再走,问他最多能看这个女孩多少次.   分析:因为这个男孩直走最短路,所以我们必须求出来所有最短路径上的路,怎么 ...

  9. HDU 3416 Marriage Match IV

    最短路+最大流 #include<cstdio> #include<cstring> #include<string> #include<cmath> ...

随机推荐

  1. git refs 详解

    https://blog.csdn.net/taiyangdao/article/details/52766424 http://www.chenchunyong.com/2017/01/06/git ...

  2. 用 config drive 配置网络

    上一节最后问了大家一个问题:如果 subnet 没有开 DHCP,会是怎样一个情况? 在其他条件不变的情况下,cloud-init 依然会完成那 3 个步骤,也就是说网卡还是会被配置成 dhcp 模式 ...

  3. HDOJ 1171 Big Event in HDU

    Big Event in HDU Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  4. TeamViewer下载地址

    http://www.teamviewer.com/zhCN/download/linux.aspx Ubuntu配置远程访问的xrdp协议和teamviewer软件 先启用远程设置:System-& ...

  5. Codeforces 898 A. Rounding

      A. Rounding   time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

  6. 使用putty通过证书登录Linux

    refer to: https://www.aliyun.com/jiaocheng/200196.html

  7. IOS开发~开机启动&无限后台运行&监听进程

    非越狱情况下实现: 开机启动:App安装到IOS设备设备之后,无论App是否开启过,只要IOS设备重启,App就会随之启动: 无限后台运行:应用进入后台状态,可以无限后台运行,不被系统kill: 监听 ...

  8. ORACLE中SID和SERVICE_NAME的区别

      先来讲一个小故事,2015年6月份,有个客户迁移了数据库,由单实例数据库变成了RAC.JAVA应用程序出现了无法连接数据库的情况,但是PL/SQL能连接上数据库.由于项目比较庞大,虽然在半夜切换的 ...

  9. mysql----乐观锁总结和实践

    悲观锁并不是适用于任何场景,它也有它存在的一些不足,因为悲观锁大多数情况下依靠数据库的锁机制实现,以保证操作最大程度的独占性.如果加锁的时间过长,其他用户长时间无法访问,影响了程序的并发访问性,同时这 ...

  10. Dedecms 数据库结构分析

    本文主要是为了今后对Dedecms做二次开发所写.安装后dedecms的数据库结构,如(图1)所示, 安装后的dedecms一共有 86 张数据表. 主要数据结构表 dede_addonarticle ...