题目来源

做这道题的方法不少。

在这里我只提一种

就是大法师。

可以采用反向建边,从最大的点开始dfs

我们考虑每次从所剩点中最大的一个点出发,我们暂且称它为i,而凡是i这个点所能到达的点,可以到达的点最大都是i。

在遍历的时候按n——>1的顺序

因为是从大到小遍历,故每个点第一次被碰到的i一定是这个点最大可到达的点

代码如下

#include<iostream>
#define maxx 500010
using namespace std;
int n,m; struct pp {
int next,to;
} edge[maxx];
int cnt;
int head[maxx]; int a[maxx];//存储答案
void add(int u,int v) { //邻接表
edge[++cnt].to=v;
edge[cnt].next=head[u];
head[u]=cnt;
}
void dfs(int x,int k) {
if(a[x]) return ; //处理环,同时保存最优解
a[x]=k;
for(int i=head[x]; i; i=edge[i].next)//遍历可以到达的点
dfs(edge[i].to,k);
}
inline void init() {
for(int i=; i<=n; i++)
head[i]=-;
}
int main() {
cin>>n>>m;
init(); //初始化
for(int i=; i<=m; i++) {
int u,v;
cin>>u>>v;
add(v,u); //反向建边
}
for(int i=n; i>=; i--) dfs(i,i); 递归搜索
for(int i=; i<=n; i++) cout<<a[i]<<' ';
}

同时可以使用vector,代码更为易读,变量同上

#include<iostream>
#include<vector>
#define maxx 500100
using namespace std;
int n,m;
vector<int > edge[maxx];
int a[maxx];
void dfs(int x,int k) {
if(a[x]) return ;
a[x]=k;
for(int i=; i<edge[x].size(); i++)
dfs(edge[x][i],k);
}
int main() {
cin>>n>>m;
for(int i=; i<=m; i++) {
int u,v;
cin>>u>>v;
edge[v].push_back(u);
}
for(int i=n; i>=; i--) dfs(i,i);
for(int i=; i<=n; i++) cout<<a[i]<<' ';
}

洛谷P3961 图的遍历的更多相关文章

  1. 洛谷P3916 图的遍历 [图论,搜索]

    题目传送门 图的遍历 题目描述 给出 N 个点, M条边的有向图,对于每个点 v ,求 A(v) 表示从点 v 出发,能到达的编号最大的点. 输入输出格式 输入格式: 第1 行,2 个整数 N,M . ...

  2. Java实现 洛谷 P3916 图的遍历(反向DFS+记忆化搜索)

    P3916 图的遍历 输入输出样例 输入 4 3 1 2 2 4 4 3 输出 4 4 3 4 import java.io.BufferedReader; import java.io.IOExce ...

  3. 洛谷P3916||图的遍历||反向建图||链式前向星||dfs

    题目描述 给出 NN 个点, MM 条边的有向图,对于每个点 vv ,求 A(v)A(v) 表示从点 vv 出发,能到达的编号最大的点. 解题思路 看起来很简单的一道题, 但我依然调了一天,我还是太菜 ...

  4. 洛谷p3916图的遍历题解

    题面 思路: 反向建边,dfs艹咋想出来的啊 倒着遍历,如果你现在遍历到的这个点已经被标记了祖先是谁了 那么就continue掉 因为如果被标记了就说明前面已经遍历过了 而我们的顺序倒着来的 前边的一 ...

  5. 洛谷P3916 图的遍历

    题目链接:https://www.luogu.org/problemnew/show/P3916 题目大意 略. 分析 以终为始,逆向思维. 代码如下 #include <bits/stdc++ ...

  6. 【bfs】洛谷 P1443 马的遍历

    题目:P1443 马的遍历 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 记录一下第一道ac的bfs,原理是利用队列queue记录下一层的所有点,然后一层一层遍历: 其中: 1.p ...

  7. 洛谷 P1443 马的遍历

    终于遇到一个简单纯粹一点的bfs了...... 题目链接:https://www.luogu.org/problemnew/show/P1443 题目是求到达一个点的最短步数 也就是说我只要bfs遍历 ...

  8. 洛谷P1443 马的遍历

    https://www.luogu.org/problemnew/show/P1443 很经典的搜索题了,蒟蒻用广搜打的 不说了,上代码! #include<bits/stdc++.h> ...

  9. 洛谷——P2819 图的m着色问题

    P2819 图的m着色问题 题目背景 给定无向连通图G和m种不同的颜色.用这些颜色为图G的各顶点着色,每个顶点着一种颜色.如果有一种着色法使G中每条边的2个顶点着不同颜色,则称这个图是m可着色的.图的 ...

随机推荐

  1. solr亿万级索引优化实践-自动生成UUID

    solr亿万级索引优化实践(三) 原创 2017年03月14日 17:03:09        本篇文章主要介绍下如何从客户端solrJ以及服务端参数配置的角度来提升索引速度. solrJ6.0提供的 ...

  2. 牛客网Java刷题知识点之同步方法和同步代码块的区别(用synchronized关键字修饰)

    不多说,直接上干货! 扩展博客 牛客网Java刷题知识点之多线程同步的实现方法有哪些 为何要使用同步?      java允许多线程并发控制,当多个线程同时操作一个可共享的资源变量时(如数据的增删改查 ...

  3. SourceGrid之Grid绑定数据

    private void BindData() { //为绑定的按钮选线增加单击事件 SourceGrid.Cells.Controllers.CustomEvents clickEvent = ne ...

  4. 让linux下的eclipse支持GBK编码

    原文链接:http://leaze.blog.51cto.com/83088/195584 今天,把windows下的工程导入到了Linux下eclipse中,由于以前的工程代码,都是GBK编码的,而 ...

  5. IO多路复用机制(转)

    1.简介 希望通过这篇文章,可以回答以下几个问题? 为什么需要IO多路复用? 什么是IO多路复用机制? IO多路复用的机制该怎么使用? epoll比select/poll相比,优势在哪里? 在了解I/ ...

  6. css命名规范—CSS样式命名整理

    CSS样式命名整理 页面结构 容器: container/wrap整体宽度:wrapper页头:header内容:content页面主体:main页尾:footer导航:nav侧栏:sidebar栏目 ...

  7. uvm_globals——告诉这个世界我爱你

    uvm_globals.svh 存放全局的变量和方法.当UVM平台启动时,便在uvm_globals查找相应的方法,uvm_globals 的方法实现也比较简单,就是调用uvm_root对应的方法.其 ...

  8. 51nod 1283 最小周长

    一个矩形的面积为S,已知该矩形的边长都是整数,求所有满足条件的矩形中,周长的最小值.例如:S = 24,那么有{1 24} {2 12} {3 8} {4 6}这4种矩形,其中{4 6}的周长最小,为 ...

  9. (六)maven之本地仓库

     本地仓库 ①    运行机制: 当用户在pom.xml文件中添加依赖jar包时,maven会先从本地仓库查找,如果这个jar包在本地仓库中找不到,就从中央仓库下载到本地仓库,中央仓库是maven默认 ...

  10. 虚拟机ubuntu16.0 安装 mysql 主机配置访问

    在bantu服务器中安装如下命令 sudo apt-get install mysql-server    sudo apt-get install mysql-client安装成功之后 进入配置文件 ...