一、背景知识

1.1 什么是分词?

  NLP的基础任务分为三个部分,词法分析、句法分析和语义分析,其中词法分析中有一种方法叫Tokenization,对汉字以字为单位进行处理叫做分词。

  Example :  我  去  北  京

       S       S       B       E

  注:S代表一个单独词,B代表一个词的开始,E表示一个词的结束(北京是一个词)。

1.2 什么是词性标注?

  句法分析中有一种方法叫词性标注(pos tagging),词性标注的目标是使用类似PN、VB等的标签对句子(一连串的词或短语)进行打签。

  Example :           I   can  open  this   can  .

  Pos tagging  -> PN  MD   VV   PN   NN  PU

  注:PN代词 MD情态动词 VV 动词 NN名词 PU标点符号

1.3 什么是分词-词性标注?

  分词-词性标注就是将分词和词性标注两个任务同时进行,在一个模型里完成,可以减少错误传播。

  Example :   我    去    北    京

       S-PN      S-VV        B-NN        E-NN

  注:如果想理解更多关于nlp基础任务的知识,可参看我整理的张岳老师暑期班的第一天的笔记。

1.4 什么是CRF?

  条件随机场(conditional random field)是一种用来标记和切分序列化数据的统计模型。在NLP领域可以用来做序列标注任务。

  注:更多关于条件随机场的理论知识,可以参考以下内容:

  条件随机场综述  

  如何轻松愉快地理解条件随机场(CRF)  

  条件随机场介绍(译)Introduction to Conditional Random Fields

  CRF条件随机场简介

二、CRF序列标注

2.1 模型结构图

最底下的词向量层,上两层是Bi-LSTM层,最上面一层是CRF层。数据流程是从下层向上层计算。

2.2 CRF部分

2.2.1 理论

Point 1: 在CRF中,每个特征函数以下列信息作为输入,输出是一个实数值。

(1)一个句子s

(2)词在句子中的位置i

(3)当前词的标签

(4)前一个词的标签

注:通过限制特征只依赖于当前与之前词的标签,而不是句子中的任意标签,实际上是建立了一种特殊的线性CRF,而不是广义上的CRF。

Point 2: CRF的训练参数

(1)Input: x = {我,去,北京}

(2)Answer: ygold = {PN,  VV,  NN}

(3)y'是CRF标注的所有可能值,有3*3*3=27个;

(4)T矩阵存储转移分数,T[yiyi-1]是上个标签是的情况下,下个标签是yi的分数;

(5)hi是向量序列,通过神经网络Bi-LSTM得到,hi[yi]是被标成的发射分数;

(6)score(x,y)是模型对x被标注成y所打出的分数,是一个实数值;

       

  Example : 我  去  北京

     PN     VV     NN

   

(7)P(ygold|x)是模型x对标注出ygold的概率;

      

Point 3: CRF的训练目标:训练模型使得变大

Step 1: 对P(ygold|x)进行转化,取对数

       

      

Step 2: 最终目标函数,使用梯度下降法

       

      

Step 3: 编程实现

       

     def _forward_alg(self, feats):
# do the forward algorithm to compute the partition function
init_alphas = torch.Tensor(1, self.labelSize).fill_(0)
# Wrap in a variable so that we will get automatic backprop
forward_var = autograd.Variable(init_alphas) # Iterate through the sentence
for idx in range(len(feats)):
feat = feats[idx]
alphas_t = [] # The forward variables at this timestep
for next_tag in range(self.labelSize):
# broadcast the emission score: it is the same regardless of the previous tag
if idx == 0:
alphas_t.append(feat[next_tag].view(1, -1))
else:
emit_score = feat[next_tag].view(1, -1).expand(1, self.labelSize)
# the ith entry of trans_score is the score of transitioning to next_tag from i
trans_score = self.T[next_tag]
# The ith entry of next_tag_var is the value for the edge (i -> next_tag) before we do log-sum-exp
next_tag_var = forward_var + trans_score + emit_score
# The forward variable for this tag is log-sum-exp of all the scores.
alphas_t.append(self.log_sum_exp(next_tag_var))
forward_var = torch.cat(alphas_t).view(1, -1)
alpha_score = self.log_sum_exp(forward_var)
return alpha_score
   # Compute log sum exp in a numerically stable way for the forward algorithm
def log_sum_exp(self, vec):
max_score = vec[0, self.argmax(vec)]
max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1])
return max_score + torch.log(torch.sum(torch.exp(vec - max_score_broadcast)))

     

     def neg_log_likelihood(self, feats, tags):
forward_score = self._forward_alg(feats) # calculate denominator
gold_score = self._score_sentence(feats, tags)
return forward_score - gold_score # calculate loss

train()中的训练部分:

         for iter in range(self.hyperParams.maxIter):
print('###Iteration' + str(iter) + "###")
random.shuffle(indexes)
for idx in range(len(trainExamples)):
# Step 1. Remember that Pytorch accumulates gradients. We need to clear them out before each instance
self.model.zero_grad()
# Step 2. Get our inputs ready for the network, that is, turn them into Variables of word indices.
self.model.LSTMHidden = self.model.init_hidden()
exam = trainExamples[indexes[idx]]
# Step 3. Run our forward pass. Compute the loss, gradients, and update the parameters by calling optimizer.step()
lstm_feats = self.model(exam.feat)
loss = self.model.crf.neg_log_likelihood(lstm_feats, exam.labelIndexs)
loss.backward()
optimizer.step()
if (idx + 1) % self.hyperParams.verboseIter == 0:
print('current: ', idx + 1, ", cost:", loss.data[0])

Point 4: 使用模型预测序列

使用维特比解码算法,解决篱笆图中的最短路径问题

 

step 1:  初始节点没有转移值

                 if idx == 0:
viterbi_var.append(feat[next_tag].view(1, -1))

step 2: 节点值由三部分组成,最后求取最大值,得到lastbestlabel的下标

             for next_tag in range(self.labelSize):
if idx == 0:
viterbi_var.append(feat[next_tag].view(1, -1))
else:
emit_score = feat[next_tag].view(1, -1).expand(1, self.labelSize)
trans_score = self.T[next_tag]
next_tag_var = forward_var + trans_score + emit_score
best_label_id = self.argmax(next_tag_var)
bptrs_t.append(best_label_id)
viterbi_var.append(next_tag_var[0][best_label_id])

step 3: 计算出所有节点,比较最后一个词的值,求取最大值之后,向前推出最佳序列。

维特比解码算法实现预测序列

     def _viterbi_decode(self, feats):
init_score = torch.Tensor(1, self.labelSize).fill_(0)
# forward_var at step i holds the viterbi variables for step i-1
forward_var = autograd.Variable(init_score)
back = []
for idx in range(len(feats)):
feat = feats[idx]
bptrs_t = [] # holds the backpointers for this step
viterbi_var = [] # holds the viterbi variables for this step
for next_tag in range(self.labelSize):
# next_tag_var[i] holds the viterbi variable for tag i at the previous step,
# plus the score of transitioning from tag i to next_tag.
# We don't include the emission scores here because the max does not
# depend on them (we add them in below)
if idx == 0:
viterbi_var.append(feat[next_tag].view(1, -1))
else:
emit_score = feat[next_tag].view(1, -1).expand(1, self.labelSize)
trans_score = self.T[next_tag]
next_tag_var = forward_var + trans_score + emit_score
best_label_id = self.argmax(next_tag_var)
bptrs_t.append(best_label_id)
viterbi_var.append(next_tag_var[0][best_label_id])
# Now add in the emission scores, and assign forward_var to the set of viterbi variables we just computed
forward_var = (torch.cat(viterbi_var)).view(1, -1)
if idx > 0:
back.append(bptrs_t)
best_label_id = self.argmax(forward_var)
# Follow the back pointers to decode the best path.
best_path = [best_label_id]
path_score = forward_var[0][best_label_id]
for bptrs_t in reversed(back):
best_label_id = bptrs_t[best_label_id]
best_path.append(best_label_id)
best_path.reverse()
return path_score, best_path

train()函数中的预测部分

        # Check predictions after training
eval_dev = Eval()
for idx in range(len(devExamples)):
predictLabels = self.predict(devExamples[idx])
devInsts[idx].evalPRF(predictLabels, eval_dev)
print('Dev: ', end="")
eval_dev.getFscore() eval_test = Eval()
for idx in range(len(testExamples)):
predictLabels = self.predict(testExamples[idx])
testInsts[idx].evalPRF(predictLabels, eval_test)
print('Test: ', end="")
eval_test.getFscore()
     def predict(self, exam):
tag_hiddens = self.model(exam.feat)
_, best_path = self.model.crf._viterbi_decode(tag_hiddens)
predictLabels = []
for idx in range(len(best_path)):
predictLabels.append(self.hyperParams.labelAlpha.from_id(best_path[idx]))
return predictLabels

Point 5 : 使用F1分数测量精度,最佳值为1,最差为0

        

     def getFscore(self):
if self.predict_num == 0:
self.precision = 0
else:
self.precision = self.correct_num / self.predict_num if self.gold_num == 0:
self.recall = 0
else:
self.recall = self.correct_num / self.gold_num if self.precision + self.recall == 0:
self.fscore = 0
else:
self.fscore = 2 * (self.precision * self.recall) / (self.precision + self.recall)
print("precision: ", self.precision, ", recall: ", self.recall, ", fscore: ", self.fscore)

注:全部代码和注释链接

扩展:可将数据中第二列和第一列一起放入Bi-LSTM中提取特征,这次只用到数据的第一列和第三列。

第四期coding_group笔记_用CRF实现分词-词性标注的更多相关文章

  1. 老男孩Python全栈第2期+课件笔记【高清完整92天整套视频教程】

    点击了解更多Python课程>>> 老男孩Python全栈第2期+课件笔记[高清完整92天整套视频教程] 课程目录 ├─day01-python 全栈开发-基础篇 │ 01 pyth ...

  2. 《Linux内核设计与实现》课本第四章自学笔记——20135203齐岳

    <Linux内核设计与实现>课本第四章自学笔记 进程调度 By20135203齐岳 4.1 多任务 多任务操作系统就是能同时并发的交互执行多个进程的操作系统.多任务操作系统使多个进程处于堵 ...

  3. 读经典——《CLR via C#》(Jeffrey Richter著) 笔记_发布者策略控制

    在 读经典——<CLR via C#>(Jeffrey Richter著) 笔记_高级管理控制(配置)中,是由程序集的发布者将程序集的一个新版本发送给管理员,后者安装程序集,并手动编辑应用 ...

  4. 老男孩python3.5全栈开发第9期+课件笔记(1-15部全 共125天完整无加密)

    点击了解更多Python课程>>> 老男孩python3.5全栈开发第9期+课件笔记(1-15部全 共125天完整无加密)大小:236G 此课程为老男孩全栈开发最新完结课程,适合零基 ...

  5. React笔记_(3)_react语法2

    React笔记_(3)_react语法2 state和refs props就是在render渲染时,向组件内传递的变量,这个传递是单向的,只能继承下来读取. 如何进行双向传递呢? state (状态机 ...

  6. [置顶] CSDN博客第四期移动开发最佳博主评选

    CSDN博客第三期最佳移动开发博主评选圆满结束,恭喜所有上榜用户,为继续展示移动开发方向优秀博主,发掘潜力新星,为移动开发方向的博客用户提供平台,CSDN博客第四期移动开发最佳博主评选开始.同时,获奖 ...

  7. 计算机爱好者协会技术贴markdown第四期

    首先先让爱酱用CSDN自带的数学公式方法来闪瞎大家的钛合金狗眼: 有没有感觉到Markdown的强大!!!!! ## KaTeX数学公式 您可以使用渲染LaTeX数学表达式 [KaTeX](https ...

  8. 《Linux内核设计与实现》第四章学习笔记

    <Linux内核设计与实现>第四章学习笔记           ——进程调度 姓名:王玮怡  学号:20135116 一.多任务 1.多任务操作系统的含义 多任务操作系统就是能同时并发地交 ...

  9. Linux内核分析第四章 读书笔记

    Linux内核分析第四章 读书笔记 第一部分--进程调度 进程调度:操作系统规定下的进程选取模式 面临问题:多任务选择问题 多任务操作系统就是能同时并发地交互执行多个进程的操作系统,在单处理器机器上这 ...

随机推荐

  1. 命令行执行Qt程序

    原文网址 //helloworld.cpp #include <QApplication> #include <QPushButton> int main(int argc,c ...

  2. 开源OA系统启动:基础数据,工作流设计

    原文:http://www.cnblogs.com/kwklover/archive/2007/01/13/bpoweroa_03_baseandworkflowdesign.html自从开源OA系统 ...

  3. Selenium WebDriver-模拟鼠标双击某个元素

    #encoding=utf-8 import unittest import time import chardet from selenium import webdriver class Visi ...

  4. 大数据学习——scala数组

    package com import scala.collection.mutable.ArrayBuffer /** * Created by Administrator on 2019/4/8. ...

  5. 02 Java 的基本类型

    Java 的基本类型 Java 包括了八种基本类型,明细如下: Java 的基本类型都有对应的值域和默认值.byte,short,int,long,float以及double的值域依次扩大,前面的值域 ...

  6. Leetcode 423.从英文中重建数字

    从英文中重建数字 给定一个非空字符串,其中包含字母顺序打乱的英文单词表示的数字0-9.按升序输出原始的数字. 注意: 输入只包含小写英文字母. 输入保证合法并可以转换为原始的数字,这意味着像 &quo ...

  7. 关于EF调用存储过程那点事...

    最近研究了下EF怎么调用 数据库的分页存储过程,发现还是很不错的 1.数据库存储过程如下,一个简单的不含条件判断的 2.然后新建数据模型中选择存储过程: : 3.EF会自动生存一个返回复杂类型(Obj ...

  8. TOJ2680: 最大矩阵连乘次数

    2680: 最大矩阵连乘次数  Time Limit(Common/Java):1000MS/10000MS     Memory Limit:65536KByteTotal Submit: 144 ...

  9. DefaultTransactionStatus源码

    package org.springframework.transaction.support; import org.springframework.transaction.NestedTransa ...

  10. Linux Shell系列教程之(六)Shell数组

    本文是Linux Shell系列教程的第(六)篇,更多shell教程请看:Linux Shell系列教程 Shell在编程方面非常强大,其数组功能也非常的完善,今天就为大家介绍下Shell数组的用法. ...