线性回归 python小样例
线性回归
优点:结果易于理解,计算上不复杂
缺点:对非线性的数据拟合不好
适用数据类型:数值型和标称型数据
horse=0.0015*annualSalary-0.99*hoursListeningToPulicRadio
这就是所谓的回归方程,其中的0.0015和-0.99称作回归系数,
求这些回归系数的过程就是回归。一旦有了这些回归系数,再给定输入,做预测就非常容易了
具体的做法就是用回归系数乘以输入值,再将结果全部加在一起,就得到了预测值
回归的一般方法
(1)收集数据:采用任意方法收集数据
(2)准备数据:回归需要数值型数据,标称型数据将被转成二值型数据(3)分析数据:绘出数据的可视化二维图将有助于对数据做出理解和分析,在采用缩减法球的新回归系数之后,
可以将新拟合线绘在图上作为对比
(4)训练算法:找到回归系数
(5)测试算法:适用R2或者预测值和数据的拟合度,来分析模型的效果
(6)使用算法:使用回归,可以在给定输入的时候预测出一个数值,这是对分类方法的提升,
因为这样可以预测连续型数据而不仅仅是离散的类别标签
应当怎样从一大堆数据中求出回归方程呢?嘉定输入数据存放在举着呢X中,而回归系数存放在向量w中,那么对于
给定的数据x1,预测结果将会通过y1=x1^T *W给出。现在的问题是,手里有些x和对应的y值,怎样才能找到W呢?
一个常用的方法就是找出使误差最小的w。这里的误差是指预测y值和真实y值之间的差值,使用该误差的简单累加
将使得正差值和负差值相互抵消,所以我们采用平方误差
from numpy import * def loadDataSet(fileName): #general function to parse tab -delimited floats
numFeat = len(open(fileName).readline().split('\t')) - 1 #get number of fields
dataMat = []; labelMat = []
fr = open(fileName)
for line in fr.readlines():
lineArr =[]
curLine = line.strip().split('\t')
for i in range(numFeat):
lineArr.append(float(curLine[i]))
dataMat.append(lineArr)
labelMat.append(float(curLine[-1]))
return dataMat,labelMat def standRegres(xArr,yArr):
xMat = mat(xArr); yMat = mat(yArr).T
xTx = xMat.T*xMat
if linalg.det(xTx) == 0.0:
print("This matrix is singular, cannot do inverse")
return
ws = xTx.I * (xMat.T*yMat)
return ws
线性回归的一个问题是有可能出现欠拟合现象,因为它求的是具有最小均方误差的无偏估计。
显而易见,如果模型欠拟合将不能取得较好的预测结果。所以有些方法允许在估计中引入一些偏差,
从而降低预测的均方误差。
其中一个方法是局部加权线性回归(LWLR)。在该算法中,我们给待预测点附近的每个点赋予一定的权重;
def lwlr(testPoint,xArr,yArr,k=1.0):
xMat = mat(xArr); yMat = mat(yArr).T
m = shape(xMat)[0]
weights = mat(eye((m)))
for j in range(m): #next 2 lines create weights matrix
diffMat = testPoint - xMat[j,:] #
weights[j,j] = exp(diffMat*diffMat.T/(-2.0*k**2))
xTx = xMat.T * (weights * xMat)
if linalg.det(xTx) == 0.0:
print("This matrix is singular, cannot do inverse")
return
ws = xTx.I * (xMat.T * (weights * yMat))
return testPoint * ws
如果数据的特征比样本点还多应该怎么办?是否可以使用线性回归和之前的方法来做预测?
答案是否定的,即不能再使用前面介绍的方法,这是因为在计算(x^T*x)^-1的时候会出错
如果特征比样本点还多(n>m),也就是说输入数据的矩阵x不是满秩矩阵,非满秩矩阵在求逆
的时会出现问题,为解决这个问题,专家引入了岭回归的概念。简单来说,岭回归就是在矩阵
X^T*X上加一个λI从而使得矩阵非奇异,进而能对x^T*x+λI求逆。其中I是单位矩阵,λ是用户定
义的一个数值。
岭回归是缩减法的一种,相当于对回归系数的大小施加了限制。另一种很好的缩减法是lasso。Lasso难以求解,但可以使用计算简便的逐步线性回归方法来求得近似的结果
缩减法还可以看作是对一个模型增加偏差的同时减少方差。偏差方差分析折中是一个重要的概念,可以帮助我们理解现有规模并做出改进,从而得到更好的模型
线性回归 python小样例的更多相关文章
- CART树 python小样例
决策树不断将数据切分成小数据集,直到所有目标变量完全相同,或者数据不能再切分为止,决策时是一种贪心算法,它要在给定的时间内做出最佳选择,但并不关心能否达到最优 树回归 优点:可以对复杂和非线性的数据建 ...
- SVM python小样例
SVM有很多种实现,但是本章只关注其中最流行的一种实现,即序列最小化(SMO)算法在此之后,我们将介绍如何使用一种称为核函数的方式将SVM扩展到更多的数据集上基于最大间隔的分割数据优点:泛化错误率低, ...
- Spring DI模式 小样例
今儿跟同事讨论起来spring早期的,通过大篇幅xml的配置演变到今天annotation的过程,然后随手写了个小样例,感觉还不错,贴到这里留个纪念. 样例就是用JAVA API的方式, ...
- SpringMVC+Spring+Hibernate的小样例
Strusts2+Spring+Hibernate尽管是主流的WEB开发框架,可是SpringMVC有越来越多的人使用了.确实也很好用.用得爽! 这里实现了一个SpringMVC+Spring+Hib ...
- 【机器学习】线性回归python实现
线性回归原理介绍 线性回归python实现 线性回归sklearn实现 这里使用python实现线性回归,没有使用sklearn等机器学习框架,目的是帮助理解算法的原理. 写了三个例子,分别是单变量的 ...
- 使用Dagger2创建的第一个小样例
将Dagger系列的咖啡壶样例再做一下简化,作为Dagger2的入门的第一个小样例. 场景描写叙述:有一个电水壶,它使用一个加热器来烧水.电水壶具备的功能有:開始加热(on方法),结束加热(off方法 ...
- 以Python为例的Async / Await的编程基础
来源:Redislabs 作者:Loris Cro 翻译:Kevin (公众号:中间件小哥) 近年来,许多编程语言都在努力改进它们的并发原语.Go 语言有 goroutines,Ruby 有 fibe ...
- 【转】以Python为例的Async / Await的编程基础
转, 原文:https://www.cnblogs.com/middleware/p/11996731.html 以Python为例的Async / Await的编程基础 -------------- ...
- 以python为例讲解闭包机制
以python为例讲解闭包机制 缘起 在学习JS的过程中,总是无可避免的接触到闭包机制,尤其是接触到react后,其函数式的编程思想更是将闭包发扬光大,作为函数式编程的重要语法结构,python自然也 ...
随机推荐
- 洛谷P4133 [BJOI2012]最多的方案(记忆化搜索)
题意 题目链接 求出把$n$分解为斐波那契数的方案数,方案两两不同的定义是分解出来的数不完全相同 Sol 这种题,直接爆搜啊... 打表后不难发现$<=1e18$的fib数只有88个 最先想到的 ...
- Swagger的使用
参考文章: https://blog.csdn.net/xupeng874395012/article/details/68946676/ https://blog.csdn.net/hry2015 ...
- Android studio 配置忽略
直接在Ignored Files选项里点击+号,在弹出的对话框选择第二项,然后依次输入上面包含的 .gradle .idea build 三个文件夹目录,再选择第一项,找到local.properti ...
- VS功能扩展--扩展介绍
使用Eclipse的朋友都知道Eclipse是一个完全可扩展的IDE,那么在windows程序开发时,我们常使用的IDE(Visual studio)是否具有功能的扩展性呢?毫无疑问,回答是肯定的.我 ...
- CentOS下内核TCP参数优化配置详解
主动关闭的一方在发送最后一个ACK后就会进入TIME_WAIT状态,并停留2MSL(Max Segment LifeTime)时间,这个是TCP/IP必不可少的. TCP/IP的设计者如此设计,主要原 ...
- python3基础07(进程操作及执行系统级命令等)
#subprocess 创建子进程 连接输入 输出 管道错误,及获取他们的状态,可执行操作系统级的命令# subprocess.run(args, *, stdin=None, input=None, ...
- html5 app开发实例 Ajax跨域访问C# webservices服务
通过几天的研究效果,如果在vs2010工具上通过webservice还是比较简单的,毕竟是一个项目. 如果您想通过HTML5 做出来的移动APP去访问c#做出来的webservice,那么就没那么简单 ...
- 解决IE下面诡异地使用quickrIE5模式打开页面的有关问题
解决IE下面诡异地使用quickrIE5模式打开页面的有关问题 <!doctype html public "-//w3c//dtd html 4.01 transitional//e ...
- cms-写帖子内容实现
写帖子后台: mapper: <?xml version="1.0" encoding="UTF-8" ?><!DOCTYPE mapperP ...
- 梦织未来Windows驱动编程 第06课 驱动对磁盘文件的操作
代码部分: 实现一个文件C:\\text.txt,并读取写入内容到文件,然后将文件设置为只读,并隐藏文件.代码如下: //MyCreateFile.c //2016.07.22 #include &l ...