Tiling Up Blocks
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 4675   Accepted: 1824

Description

Michael The Kid receives an interesting game set from his grandparent as his birthday gift. Inside the game set box, there are n tiling blocks and each block has a form as follows: 

Each tiling block is associated with two parameters (l,m), meaning that the upper face of the block is packed with l protruding knobs on the left and m protruding knobs on the middle. Correspondingly, the bottom face of an (l,m)-block is carved with l caving dens on the left and m dens on the middle. 
It is easily seen that an (l,m)-block can be tiled upon another (l,m)-block. However,this is not the only way for us to tile up the blocks. Actually, an (l,m)-block can be tiled upon another (l',m')-block if and only if l >= l' and m >= m'. 
Now the puzzle that Michael wants to solve is to decide what is the tallest tiling blocks he can make out of the given n blocks within his game box. In other words, you are given a collection of n blocks B = {b1, b2, . . . , bn} and each block bi is associated with two parameters (li,mi). The objective of the problem is to decide the number of tallest tiling blocks made from B. 

Input

Several sets of tiling blocks. The inputs are just a list of integers.For each set of tiling blocks, the first integer n represents the number of blocks within the game box. Following n, there will be n lines specifying parameters of blocks in B; each line contains exactly two integers, representing left and middle parameters of the i-th block, namely, li and mi. In other words, a game box is just a collection of n blocks B = {b1, b2, . . . , bn} and each block bi is associated with two parameters (li,mi). 
Note that n can be as large as 10000 and li and mi are in the range from 1 to 100. 
An integer n = 0 (zero) signifies the end of input.

Output

For each set of tiling blocks B, output the number of the tallest tiling blocks can be made out of B. Output a single star '*' to signify the end of 
outputs.

Sample Input

3
3 2
1 1
2 3
5
4 2
2 4
3 3
1 1
5 5
0

Sample Output

2
3
*
题目大意:给定n个砖块的长和宽,只有当x2>=x1&&y2>=y1时 n2可以放在n1上 问最高能落多高。
解题方法:求最大不上升子序列,用动态规划。
#include <stdio.h>
#include <iostream>
#include <string.h>
using namespace std; int main()
{
int w[][];
int dp[][];
int n;
while(scanf("%d", &n) != EOF)
{
if (n == )
{
printf("*\n");
break;
}
int a, b;
memset(w, , sizeof(w));
memset(dp, , sizeof(dp));
for (int i = ; i <= n; i++)
{
scanf("%d%d", &a, &b);
w[a][b]++;
}
for (int i = ; i <= ; i++)
{
for (int j = ; j <= ; j++)
{
dp[i][j] = max(dp[i - ][j], dp[i][j - ]) + w[i][j];
}
}
printf("%d\n", dp[][]);
}
return ;
}
 

POJ 1609 Tiling Up Blocks的更多相关文章

  1. poj 1609 dp

    题目链接:http://poj.org/problem?id=1609 #include <cstdio> #include <cstring> #include <io ...

  2. poj 2506 Tiling(递推 大数)

    题目:http://poj.org/problem?id=2506 题解:f[n]=f[n-2]*2+f[n-1],主要是大数的相加; 以前做过了的 #include<stdio.h> # ...

  3. POJ 1052 Plato's Blocks

      Plato's Blocks Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 734   Accepted: 296 De ...

  4. [ACM] POJ 2506 Tiling (递归,睑板)

    Tiling Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7487   Accepted: 3661 Descriptio ...

  5. POJ 2506 Tiling

    Tiling Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7437   Accepted: 3635 Descriptio ...

  6. poj 2506 Tiling(高精度)

    Description In how many ways can you tile a 2xn rectangle by 2x1 or 2x2 tiles? Here is a sample tili ...

  7. HOJ 2124 &POJ 2663Tri Tiling(动态规划)

    Tri Tiling Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9016 Accepted: 4684 Descriptio ...

  8. POJ 2506 Tiling(递推+大整数加法)

    http://poj.org/problem?id=2506 题意: 思路:递推.a[i]=a[i-1]+2*a[i-2]. 计算的时候是大整数加法.错了好久,忘记考虑1了...晕倒. #includ ...

  9. poj 2506 Tiling(java解法)

    题目链接:id=2506">http://poj.org/problem?id=2506 本题用的java解的.由于涉及到大数问题,假设对java中的大数操作不熟悉请点这儿:链接 思路 ...

随机推荐

  1. 64位Windows系统下32位应用程序连接MySql

    1.首先得安装“Connector/ODBC”,就是Mysql的ODBC驱动,这个是与应用程序相关的,而不是与操作系统相关的,也就是说,不管你的系统是x64还是x86,只要你的应用程序是x86的那么, ...

  2. Web端 年月日下拉表 密码判断 按钮判断是否提交

    生日: <asp:DropDownList ID="selYear" runat="server"></asp:DropDownList> ...

  3. CF 55D Beautiful numbers (数位DP)

    题意: 如果一个正整数能被其所有位上的数字整除,则称其为Beautiful number,问区间[L,R]共有多少个Beautiful number?(1<=L<=R<=9*1018 ...

  4. 洛谷 P1433 吃奶酪

    题目描述 房间里放着n块奶酪.一只小老鼠要把它们都吃掉,问至少要跑多少距离?老鼠一开始在(0,0)点处. 输入输出格式 输入格式: 第一行一个数n (n<=15) 接下来每行2个实数,表示第i块 ...

  5. 3. Netbackup 7.6客户端的安装(windows/linux)

    1 客户端的安装 1.1 Windows客户端安装 1.1.1 客户端hosts修改 windows xp/2003/vista/2008/7/8用户HOSTS文件是在“c:\windows\syst ...

  6. JAVA并发编程:相关概念及VOLATILE关键字解析

    一.内存模型的相关概念 由于计算机在执行程序时都是在CPU中运行,临时数据存在主存即物理内存,数据的读取和写入都要和内存交互,CPU的运行速度远远快于内存,会大大降低程序执行的速度,于是就有了高速缓存 ...

  7. StatementHandler-Mybatis源码系列

    内容更新github地址:我飞 StatementHandler接口 StatementHandler封装了Mybatis连接数据库操作最基础的部分.因为,无论怎么封装,最终我们都是要使用JDBC和数 ...

  8. 面向对象OONo.3单元总结

    一,JML语言 1)JML理论基础:JML是一类语言,用来描述一个方法或一个类的功能.以及这个类在实现这个功能时需要的条件.可能改变的全局变量.以及由于条件问题不能实现功能时这个方法或类的行为,具有明 ...

  9. 【转】C++后台开发应该读的书

    转载自http://www.cnblogs.com/balloonwj/articles/9094905.html 作者 左雪菲 根据我的经验来谈一谈,先介绍一下我的情况,坐标上海,后台开发(也带团队 ...

  10. 【卡常 bitset 分块】loj#6499. 「雅礼集训 2018 Day2」颜色

    好不容易算着块大小,裸的分块才能过随机极限数据:然而这题在线的数据都竟然是构造的…… 题目描述 有 $n$ 个数字,第 $i$ 个数字为 $a_i$. 有 $m$ 次询问,每次给出 $k_i$ 个区间 ...