POJ 1609 Tiling Up Blocks
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 4675 | Accepted: 1824 |
Description

Each tiling block is associated with two parameters (l,m), meaning that the upper face of the block is packed with l protruding knobs on the left and m protruding knobs on the middle. Correspondingly, the bottom face of an (l,m)-block is carved with l caving dens on the left and m dens on the middle.
It is easily seen that an (l,m)-block can be tiled upon another (l,m)-block. However,this is not the only way for us to tile up the blocks. Actually, an (l,m)-block can be tiled upon another (l',m')-block if and only if l >= l' and m >= m'.
Now the puzzle that Michael wants to solve is to decide what is the tallest tiling blocks he can make out of the given n blocks within his game box. In other words, you are given a collection of n blocks B = {b1, b2, . . . , bn} and each block bi is associated with two parameters (li,mi). The objective of the problem is to decide the number of tallest tiling blocks made from B.
Input
Note that n can be as large as 10000 and li and mi are in the range from 1 to 100.
An integer n = 0 (zero) signifies the end of input.
Output
outputs.
Sample Input
3
3 2
1 1
2 3
5
4 2
2 4
3 3
1 1
5 5
0
Sample Output
2
3
*
题目大意:给定n个砖块的长和宽,只有当x2>=x1&&y2>=y1时 n2可以放在n1上 问最高能落多高。
解题方法:求最大不上升子序列,用动态规划。
#include <stdio.h>
#include <iostream>
#include <string.h>
using namespace std; int main()
{
int w[][];
int dp[][];
int n;
while(scanf("%d", &n) != EOF)
{
if (n == )
{
printf("*\n");
break;
}
int a, b;
memset(w, , sizeof(w));
memset(dp, , sizeof(dp));
for (int i = ; i <= n; i++)
{
scanf("%d%d", &a, &b);
w[a][b]++;
}
for (int i = ; i <= ; i++)
{
for (int j = ; j <= ; j++)
{
dp[i][j] = max(dp[i - ][j], dp[i][j - ]) + w[i][j];
}
}
printf("%d\n", dp[][]);
}
return ;
}
POJ 1609 Tiling Up Blocks的更多相关文章
- poj 1609 dp
题目链接:http://poj.org/problem?id=1609 #include <cstdio> #include <cstring> #include <io ...
- poj 2506 Tiling(递推 大数)
题目:http://poj.org/problem?id=2506 题解:f[n]=f[n-2]*2+f[n-1],主要是大数的相加; 以前做过了的 #include<stdio.h> # ...
- POJ 1052 Plato's Blocks
Plato's Blocks Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 734 Accepted: 296 De ...
- [ACM] POJ 2506 Tiling (递归,睑板)
Tiling Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7487 Accepted: 3661 Descriptio ...
- POJ 2506 Tiling
Tiling Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7437 Accepted: 3635 Descriptio ...
- poj 2506 Tiling(高精度)
Description In how many ways can you tile a 2xn rectangle by 2x1 or 2x2 tiles? Here is a sample tili ...
- HOJ 2124 &POJ 2663Tri Tiling(动态规划)
Tri Tiling Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9016 Accepted: 4684 Descriptio ...
- POJ 2506 Tiling(递推+大整数加法)
http://poj.org/problem?id=2506 题意: 思路:递推.a[i]=a[i-1]+2*a[i-2]. 计算的时候是大整数加法.错了好久,忘记考虑1了...晕倒. #includ ...
- poj 2506 Tiling(java解法)
题目链接:id=2506">http://poj.org/problem?id=2506 本题用的java解的.由于涉及到大数问题,假设对java中的大数操作不熟悉请点这儿:链接 思路 ...
随机推荐
- LR中变量、参数的使用介绍
Action(){ char * url = "www.baidu.com"; char arr_url[1024]; //将url变量的值复制给p_url1参数 lr_save_ ...
- 洛谷 P2868 [USACO07DEC]观光奶牛Sightseeing Cows
题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...
- 如何使用ABAP Restful API进行代码的全文搜索
使用这个代码全文搜索的前提条件,是在事务码SFW5里激活业务功能:SRIS_SOURCE_SEARCH 只需要把这个url贴到浏览器里: https://:44355/sap/bc/adt/repos ...
- 为DataGridView控件实现复选功能
实现效果: 知识运用: DataGridViewCheckBoxColumn类 实现代码: private class Fruit { public int Price { get; set; } p ...
- 2018.3.11 Java DEBUG 调试的方法
F5:Step Into:跳进当前执行的方法中 F6:Step Over:跳过该行继续执行 F7:Step Return:从方法中跳出继续执行 F8:Resume:全部运行通过,从调试状态恢复 Ctr ...
- Windows系统安装docker
下载安装包 官网 点击 Get Started ,打开入门页面,往下拉,找到 Download for Windows 打开 下载页面 ,点击 Please Login To Download ,要注 ...
- hash join
hash join是oracle里面一个非常强悍的功能,当做hash join时,oracle会选择一个表作为驱动表,先根据过滤条件排除不必要的数据,然后将结果集做成hash表,放入进程的hash a ...
- vue中文本域限制字数的方法
用watch方法,来限制字数 <template> <div class="box"> <textarea v-model="title&q ...
- Win10家庭版找不到组策略gpedit.msc
首先在桌面上建立一个txt文本文件,将下面的代码复制到里面 @echo off pushd "%~dp0" dir /b C:\Windows\servicing\Packages ...
- 忘记root密码怎么办-单用户模式修改root密码
忘记root密码怎么办-单用户模式修改root密码================================= 1,开机3秒内按下向下的方向键,目的是为了不让它进入系统,而是停留在开机界面. 2 ...