思路:

  因为当n>=1e10的时候,线性筛就不好使啦。所以要用一个公式

  φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn)

  证明详见:《公式证明:欧拉函数》

  Miller-Rabin算法:

    判断某个数是否是素数,不是素数则返回一个因子。

  Pollard-Rho算法:

    利用Miller-Rabin求出 质因数。

    具体的:

      如果当前的数不是质数,找质因数 再搜Rho(n/d)和Rho(d)

      如果是质数(不一定准确),再去判断。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<set>
#include<vector>
#include<map>
#include<string>
#include<iomanip>
#include<iostream>
#include<cmath>
#include<queue>
using namespace std;
#define ALL(x,S) for(x=S.begin();x!=S.end();x++)
typedef long long LL;
typedef long double real;
bool pd_prime[];
set<LL> S;
set<LL>::iterator pos;
LL n;
void prepare()
{
int i,j;
memset(pd_prime,,sizeof pd_prime);
pd_prime[]=;
for(int i=;i<=;i++)
if(pd_prime[i])
for(int j=;j<=/i;j++)
pd_prime[i*j]=;
}
void addp(LL t)
{ S.insert(t);}
LL gcd(LL a,LL b)
{
if(!b) return a;
return gcd(b,a%b);
}
LL mul(LL a,LL b,LL mod)
{
LL ans=;
while(b)
{
if(b&) ans=(ans+a)%mod;
a=(a+a)%mod;
b>>=;
}
return ans;
}
LL pow(LL a,LL b,LL mod)
{
LL ans=;
while(b)
{
if(b&) ans=mul(ans,a,mod);
b>>=;
a=mul(a,a,mod);
}
return ans;
}
bool MR(LL n,LL k)
{
LL s=n-,w=;
while(!(s&))
w++,s>>=;
LL y=pow(k,s,n);
if(y== || y==n-)
return ;
while(w--)
{
y=mul(y,y,n);
if(y==n-)
return ;
}
return ;
}
bool prime(LL n)
{
if(n<=)
return pd_prime[n];
bool flag=;
for(int i=;i<=;i++)
if(pd_prime[i])
if(!MR(n,i)) flag=;
return flag;
}
void rho(LL n)
{
if(n==) return ;
if(n==)
{
addp();
addp();
return ;
}
if(prime(n))
{
addp(n);
return ;
}
LL x,y,d,p;
while()
{
x=,y=,d=;
p=mul(rand(),rand(),);
if(d==)
{
x=(mul(x,x,n)+p)%n;
y=(mul(y,y,n)+p)%n;
y=(mul(y,y,n)+p)%n;
d=gcd(abs(x-y),n);
}
if(d==n) continue;
rho(d);rho(n/d);
return ;
}
}
LL phi(LL x)
{
S.clear();
rho(x);
LL ans=x;
ALL(pos,S)
ans=ans/(*pos)*((*pos)-);
return ans;
}
int main()
{
freopen("phi.in","r",stdin);
freopen("phi.out","w",stdout);
prepare();
scanf("%lld",&n);
cout<<phi(n);
return ;
}

求一个极大数的欧拉函数 phi(i)的更多相关文章

  1. POJ3090 巧用欧拉函数 phi(x)

    POJ3090 给定一个坐标系范围 求不同的整数方向个数 分析: 除了三个特殊方向(y轴方向 x轴方向 (1,1)方向)其他方向的最小向量表示(x,y)必然互质 所以对欧拉函数前N项求和 乘2(关于( ...

  2. hdu 3501 Calculation 2 (欧拉函数)

    题目 题意:求小于n并且 和n不互质的数的总和. 思路:求小于n并且与n互质的数的和为:n*phi[n]/2 . 若a和n互质,n-a必定也和n互质(a<n).也就是说num必定为偶数.其中互质 ...

  3. 筛法求欧拉函数(poj2478

    求1-n的欧拉函数的值 #include <iostream> #include <cstdio> #include <queue> #include <al ...

  4. UVA10200-Prime Time/HDU2161-Primes,例题讲解,牛逼的费马小定理和欧拉函数判素数。

                                                    10200 - Prime Time 此题极坑(本菜太弱),鉴定完毕,9遍过. 题意:很简单的求一个区间 ...

  5. POJ 2480 (约数+欧拉函数)

    题目链接: http://poj.org/problem?id=2480 题目大意:求Σgcd(i,n). 解题思路: 如果i与n互质,gcd(i,n)=1,且总和=欧拉函数phi(n). 如果i与n ...

  6. 数论 - 欧拉函数模板题 --- poj 2407 : Relatives

    Relatives Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11372   Accepted: 5544 Descri ...

  7. 欧拉函数 cojs 2181. 打表

    cojs 2181. 打表 ★☆   输入文件:sendtable.in   输出文件:sendtable.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 有一道比赛题 ...

  8. NOIP模拟:切蛋糕(数学欧拉函数)

    题目描述  BG 有一块细长的蛋糕,长度为 n. 有一些人要来 BG 家里吃蛋糕, BG 把蛋糕切成了若干块(整数长度),然后分给这些人. 为了公平,每个人得到的蛋糕长度和必须相等,且必须是连续的一段 ...

  9. 容斥原理、欧拉函数、phi

    容斥原理: 直接摘用百度词条: 也可表示为 设S为有限集, ,则 两个集合的容斥关系公式:A∪B = A+B - A∩B (∩:重合的部分) 三个集合的容斥关系公式:A∪B∪C = A+B+C - A ...

随机推荐

  1. homebrew cask安装launch rocket【转】

    简介 brew cask是一个用命令行管理Mac下应用的工具,它是基于homebrew的一个增强工具. homebrew可以管理Mac下的命令行工具,例如imagemagick, nodejs,如下所 ...

  2. ACM学习历程—Hihocoder 1178 计数(位运算 && set容器)(hihoCoder挑战赛12)

    时间限制:10000ms 单点时限:1000ms 内存限制:256MB   描述 Rowdark是一个邪恶的魔法师.在他阅读大巫术师Lich的传记时,他发现一类黑魔法来召唤远古生物,鱼丸. 魔法n能召 ...

  3. The specified named connection is either not found in the configuration, not intended to be used

    今天用EF遇到一个问题, The specified named connection is either not found in the configuration, not intended t ...

  4. .NETFramework-Web.Services:WebMethodAttribute

    ylbtech-.NETFramework-Web.Services:WebMethodAttribute 1.程序集 System.Web.Services, Version=4.0.0.0, Cu ...

  5. Redis 教程笔记

    简介: 开源BSD.key-value数据库.数据持久化(可将内存数据保存到磁盘中),提供多种数据结构. 支持数据备份(master-slave模式) 优势: 性能高.数据类型丰富.原子性.其他 Re ...

  6. SSH 整合时报内存溢出 缓存无法释放

    简单点讲, 我的问题就是jar包一样, 但版本不一样, 还有重复的jar导入了, 导致了这个问题, 别人的我不知道, 问题知道了, 答案也就有了, 是重复加载的问题, 删掉重复的就好了.

  7. 【244】◀▶IEW-Unit09

    Unit 9 Food 1)Model1题目及范文讲解 In the world today, there is a problem with food production. As a result ...

  8. fastIO模板

    freadIO整理 namespace fastIO{ #define BUF_SIZE 100000 ; inline char nc() { static char buf[BUF_SIZE],* ...

  9. ZOJ - 4104 Sequence in the Pocket(思维+元素移至列首排序)

    Sequence in the Pocket Time Limit: 1 Second      Memory Limit: 65536 KB DreamGrid has just found an ...

  10. 数据库路由中间件MyCat - 使用篇(2)

    此文已由作者张镐薪授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 基本概念 3. 分片 3.1 分片节点(dataNode) 表被水平切分后,每个分片表所在的数据库就是一个分 ...