https://www.luogu.org/problemnew/show/P2568#sub

最喜欢题面简洁的题目了。

本题为求两个数的gcd是素数,那么我们将x和y拆一下,

假设p为$gcd(x,y)$,且p是一个素数,$x=a \times p , y = b \times p $。

然而要满足p的条件的话,a和b一定是互质的,满足$0 \le a,b \le \frac{n}{p} $

这样的话我们可以枚举这个质数p,将小于$\frac{n}{p}$的数,以及与它互质的数加起来。

互质的数的个数自然想到了欧拉函数,优化想加的话显然前缀和(我就琢磨了半天)

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
#define LL long long
int n;
int prime[],tot;
bool vis[];
LL phi[],ans;
void get_phi()
{
phi[]=;
for(int i=;i<=n;i++)
{
if(!vis[i])prime[++tot]=i,phi[i]=i-;
for(int j=;j<=tot&&prime[j]*i<=n;j++)
{
vis[prime[j]*i]=;
if(i%prime[j]==)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else phi[i*prime[j]]=phi[i]*phi[prime[j]];
}
}
for(int i=;i<=n;i++)phi[i]=phi[i-]+phi[i];
}
int main()
{
scanf("%d",&n);
get_phi();
for(int i=;i<=tot;i++)ans+=phi[n/prime[i]];
printf("%lld",ans*+tot);
  //乘2的原因就不多说了(x,y)和(y,x)啊。
   之所以再加一个tot是因为我的phi数组定义的phi[1]=0.
}

洛谷 P2568 GCD的更多相关文章

  1. 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)

    P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...

  2. 洛谷P2568 GCD(线性筛法)

    题目链接:传送门 题目: 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 ...

  3. 洛谷 - P2568 - GCD - 欧拉函数

    https://www.luogu.org/problemnew/show/P2568 统计n以内gcd为质数的数的个数. 求 \(\sum\limits_p \sum\limits_{i=1}^{n ...

  4. [洛谷P2568]GCD

    题目大意:给你$n(1\leqslant n\leqslant 10^7)$,求$\displaystyle\sum\limits_{x=1}^n\displaystyle\sum\limits_{y ...

  5. 洛谷 P2568 GCD(莫比乌斯反演)

    题意:$\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(i,j)\epsilon prime]$. 对于这类题一般就是枚举gcd,可得: =$\sum_{d\epsilon prim ...

  6. 洛谷 P2568 GCD 题解

    原题链接 庆祝一下:数论紫题达成成就! 第一道数论紫题.写个题解庆祝一下吧. 简要题意:求 \[\sum_{i=1}^n \sum_{j=1}^n [gcd(i,j)==p] \] 其中 \(p\) ...

  7. 洛谷P2568 GCD(莫比乌斯反演)

    传送门 这题和p2257一样……不过是n和m相同而已…… 所以虽然正解是欧拉函数然而直接改改就行了所以懒得再码一遍了2333 不过这题卡空间,记得mu开short,vis开bool //minamot ...

  8. 洛谷P2398 GCD SUM (数学)

    洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入 ...

  9. 洛谷 P1890 gcd区间

    P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R] ...

随机推荐

  1. 判断iphone 屏幕大小宏定义

    #define IS_IPAD (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad)  #define IS_IPHONE (UI_USER_I ...

  2. docker网络设置(待整理)

      手动指定容器的配置      -h HOSTNAME or --hostname=HOSTNAME  \\设定容器的主机名.      --dns=IP_ADDRESS  \\指定DNS地址.  ...

  3. Spring @Import 注解

    @Import  导入某个bean 文件 @Configuration @Import({User.class,MyImportSelector.class,MyImportBeanDefinitio ...

  4. 第八届蓝桥杯大赛个人赛决赛(软件类)真题C++

    哥德巴赫分解 哥德巴赫猜想认为:不小于4的偶数都可以表示为两个素数的和. 你不需要去证明这个定理,但可以通过计算机对有限数量的偶数进行分解,验证是否可行. 实际上,一般一个偶数会有多种不同的分解方案, ...

  5. Net Core免费开源分布式异常日志收集框架Exceptionless

    asp.Net Core免费开源分布式异常日志收集框架Exceptionless安装配置以及简单使用图文教程 https://www.cnblogs.com/yilezhu/p/9193723.htm ...

  6. NET full stack framework

    NFX UNISTACK 介绍 学习.NET Core和ASP.NET Core,偶然搜索到NFX UNISTACK,现翻译一下Readme,工程/原文:https://github.com/aumc ...

  7. 使用 swift3.0高仿新浪微博

    项目地址:https://github.com/SummerHH/swift3.0WeBo 使用 swift3.0 高仿微博,目前以实现的功能有,添加访客视图,用户信息授权,首页数据展示(支持正文中连 ...

  8. 记录下这周的mysql调优工作

    这周一至周四基本都在做mysql的测试和调优工作,包括erlang端对mysql的写入测试,到今天为止暂且告一段落,下周先做下其他的开发.    测试环境    使用的测试环境是aliyun的杭州节点 ...

  9. css简单动画

    这几天公司需要更新一个移动端web的页面,因为任务简单,就交给作为菜鸟新人的我来做.第一次接触css还是在14年刚上大一的时候跟着html一起学习的,之后就再也没有接触过.所以只好一边学习,一边完成任 ...

  10. C# 对接腾讯企业邮接口----get/post请求

    在无所知之的情况下.来了一个对接接口的任务,没办法,只能根据前端时候的经验硬着头皮上了,随后又整理了一下写的方法,主要包括了部门的创建.更新.删除.查找.然后他们的前提是token的获取 首先HTTP ...