题目描述

明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!
我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西。理所当然的,你当然要帮他计算携带N件物品的方案数。
他这次又准备带一些受欢迎的食物,如:蜜桃多啦,鸡块啦,承德汉堡等等
当然,他又有一些稀奇古怪的限制:
每种食物的限制如下:
       承德汉堡:偶数个
       可乐:0个或1个
       鸡腿:0个,1个或2个
       蜜桃多:奇数个
       鸡块:4的倍数个
       包子:0个,1个,2个或3个
       土豆片炒肉:不超过一个。
       面包:3的倍数个
注意,这里我们懒得考虑明明对于带的食物该怎么搭配着吃,也认为每种食物都是以‘个’为单位(反正是幻想嘛),只要总数加起来是N就算一种方案。因此,对于给出的N,你需要计算出方案数,并对10007取模。

输入

5

输出

35


题解

Orz popoqqq:http://blog.csdn.net/popoqqq/article/details/42805975

话说没有必要求逆元

#include <cstdio>
#define MOD 60042
char str[510];
int main()
{
int i;
long long s = 0;
scanf("%s" , str);
for(i = 0 ; str[i] ; i ++ ) s = (s * 10 + str[i] - '0') % MOD;
printf("%lld\n" , s * (s + 1) * (s + 2) % MOD / 6);
return 0;
}

【bzoj3028】食物 数论+生成函数的更多相关文章

  1. 2018.12.30 bzoj3028: 食物(生成函数)

    传送门 生成函数模板题. 我们直接把每种食物的生成函数列出来: 承德汉堡:1+x2+x4+...=11−x21+x^2+x^4+...=\frac 1{1-x^2}1+x2+x4+...=1−x21​ ...

  2. BZOJ3028 食物 (生成函数)

    首先 1+x+x^2+x^3+...+x^∞=1/(1-x) 对于题目中的几种食物写出生成函数 (对于a*x^b , a表示方案数 x表示食物,b表示该种食物的个数) f(1)=1+x^2+x^4+. ...

  3. BZOJ3028 食物(生成函数)

    显然构造出生成函数:则有f(x)=(1+x2+x4+……)·(1+x)·(1+x+x2)·(x+x3+x5+……)·(1+x4+x8+……)·(1+x+x2+x3)·(1+x)·(1+x3+x6+…… ...

  4. 【BZOJ3028】食物(生成函数)

    [BZOJ3028]食物(生成函数) 题面 一个人要带\(n\)个物品,共有\(8\)种物品,每种的限制分别如下: 偶数个;0/1个;0/1/2个;奇数个; 4的倍数个;0/1/2/3个;0/1个;3 ...

  5. bzoj3028食物

    http://www.lydsy.com/JudgeOnline/problem.php?id=3028 好吧,这是我第一道生成函数的题目. 先搞出各种食物的生成函数: 汉堡:$1+x^2+x^4+. ...

  6. bzoj3028食物 关于(1+x+x2+x3+x4+...)^k的第i项系数就是c(i+k−1,k−1)的证明

    关于(1+x+x2+x3+x4+...)^k的第i项系数就是c(i+k−1,k−1)的证明对于第i项,假设为5x^5=x^0*x^5x^5=x^1*x^4x^5=x^2*x^3........也就是说 ...

  7. BZOJ3028食物——生成函数+泰勒展开

    题目描述 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应 该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数.他这次又准备带一些 ...

  8. BZOJ3028: 食物(生成函数)

    题意 链接 Sol 生成函数入门题. 对每个物品分别列一下,化到最后是\(\frac{x}{(1-x)^4}\) 根据广义二项式定理,最后答案是\(C_{(N - 1) + 4 - 1}^{4-1} ...

  9. 【BZOJ 3028】 3028: 食物 (生成函数)

    3028: 食物 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 569  Solved: 382 Description 明明这次又要出去旅游了,和上次 ...

随机推荐

  1. Aizu 2304 Reverse Roads(无向流)

    把有向图修改成无向图,并保证每条边的流量守恒并满足有向容量(即abs(flow(u,v) - flow(v,u)) <= 1)满足限制. 得到最大流,根据残流输出答案. 因为最后少了'\n'而W ...

  2. 复习C++_指针、动态分配内存

    注意:++i指的是先计算i+1,然后将其赋给i cout<<str[7]<<endl; //输出a 注:交换失败 注意:delete释放之后,变为迷途指针. 注:n--> ...

  3. ScriptMaker

    0x00 前言 pwn脚本千篇一律,之前也是保存了一份模板,每次都用它,但还是觉得每次都复制一次各种名字还是有的累,于是就写了一份脚本生成器 0x01 ScriptMaker #!/usr/bin/e ...

  4. 《javascript 学习笔记》

    注释 1. // This is an in-line comment. 2. /* This is a  multi-line comment */ 七种data types(数据类型) undef ...

  5. 【Java】基本数据类型以及其转换

    整理了一下Java基本数据类型和面试可能涉及的知识.      字节数(byte)  位数(bit)  取值范围 整型  byte  1  8  -2^7 ~ 2^7 -1 short   2  16 ...

  6. daemon函数实现原理 守护进程

    linux提供了daemon函数用于创建守护进程,实现原理如下: #include <unistd.h> int daemon(int nochdir, int noclose); 1.  ...

  7. SummerVocation_Learning--java的基本概念

    基本数据类型:四类八种. 四类:整数型(默认int),浮点型(默认double),逻辑型(布尔型),文本型(字符型). 八种:int, byte, short, long; double, float ...

  8. cf492E. Vanya and Field(扩展欧几里得)

    题意 $n \times n$的网格,有$m$个苹果树,选择一个点出发,每次增加一个偏移量$(dx, dy)$,最大化经过的苹果树的数量 Sol 上面那个互素一开始没看见,然后就GG了 很显然,若$n ...

  9. C/C++程序基础 (五)位运算

    C++中四种转换运算符的区分 const_cast 修改const和volatile属性 reinterpret_cast 指针间类型转换或者指针和整形的转换.二进制重新翻译. static_cast ...

  10. Fight Against Traffic -简单dijkstra算法使用

    题目链接 http://codeforces.com/contest/954/problem/D 题目大意 n m s t 分别为点的个数, 边的个数,以及两个特殊的点 要求s与t间的距离在新增一条边 ...