ZOJ 3231 Apple Transportation 树DP
一、前言
红书上面推荐的题目,在138页,提到了关键部分的题解,但是实际上他没提到的还有若干不太好实现的地方。尤其是在这道题是大家都拿网络流玩弄的大背景下,这个代码打不出来就相当的揪心了。。最后在牛客找到一个用来参考的代码,经过研究发现他的代码实际上实现的是那个比较简单的实现版本(二维但是使用背包来进行处理)。加了若干行注释强行理解之后,对最终复刻的版本做了一下滚动数组优化(之前该大佬在函数内部开105*105的大数组,我开的数字稍微大了一些就直接炸了)。
二、题意
首先有一个树,生物学意义上的树和图论意义上的树,上面有N个节点,节点上有若干苹果,一群住在树上的松鼠想搞平均主义,将苹果尽量平均的分不到各个节点上——(意味着每个节点分到的苹果数量不是AVG,就是AVG+1个)于是要求你在这个要求之下求出所需花费的最小成本——(苹果数量*边的权重=成本)
三、题解
第一个坑:假设没有AVG+1的树,应当如何进行分配?
设DP【i】意义为第i个节点及其子节点分配完所需要花费的成本,对于每个子树而言,实际上本身树上的苹果个数具体是多余AVG还是少于AVG并不重要——我们可以假设不论多还是少都可以向父节点进行周转,且最最终一定会达到平衡,因此我们不需要再更多的考虑谋一棵树上的苹果如果多了他去哪,如果少了他问谁要这种问题。
第二个坑:对于有了AVG+1的节点,又有什么不同?
设dp[i][j]为给第i个节点分配j个AVG+1的指标,所需花费的最小成本。则应当认为当前节点i所具有的成本是“所有给子节点分配总大小为J的指标时的最小值”,当然这里如果使用强行枚举就太多了,所以在使用一发背包来解决这个最优化问题:大概类似于必须装满的01背包
第三个坑:背包的滚动数组优化:具体看代码吧~分别帖他的代码和我的代码:
//他的代码
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <vector>
using namespace std;
typedef long long ll;
vector<pair<int, ll> > g[];
ll n;
void init() {
for(int i = ; i < n; i++) {
g[i].clear();
}
} //清空邻接表
void ins(int u, int v, ll c) {
g[u].push_back(make_pair(v, c));
} //插入一条边
ll a[]; //记录个点权重
ll cnt[], sum[];//记录子节点数目和子节点权重 void dfs1(int u, int f) {
cnt[u] = ;
sum[u] = a[u];
for(int i = ; i < g[u].size(); i++) {
int ve = g[u][i].first, vc = g[u][i].second;
if(ve == f) continue;
dfs1(ve, u);
cnt[u] += cnt[ve];
sum[u] += sum[ve];
}
} ll pingj, mcn; //保存平均数字和特殊指标
ll dp[][];
inline ll ABS(ll x) {
if(x < ) x = -x;
return x;
}
inline void checkmin(ll &x, ll y) {
if(x == - || x > y) x = y;
}
void dfs(int u, int f) { if(cnt[u] == ) { //如果当前节点是叶子节点的话首先认为给他发1个或者0个指标都将有且仅有0的成本
dp[u][] = ;
dp[u][] = ;
return ;
}
ll d[][];
memset(d, -, sizeof(d));
d[][] = ;
int cc = ; //第cc个子节点给出的指标是J。应当认为CC用来保存每个合法节点的数量,于是重点是第几个合法节点。
//因而不适用I作为状态转移方程的指标
for(int i = ; i < g[u].size(); i++) {
int v = g[u][i].first;
ll co = g[u][i].second;
if(v == f) continue; //首先遍历所有的子节点,之后来处理背包相同的思路
dfs(v, u);
for(int j = ; j <= mcn; j++) { //枚举已经用掉的指标
if(d[cc][j] == -) continue; //如果当前已经用掉的指标不支持则继续
for(int k = ; k + j <= mcn && k <= cnt[v]; k++) { //枚举发出去的指标是K
if(dp[v][k] == -) continue; //如果子节点不接受K则继续枚举
int num = k * (pingj + ) + (cnt[v] - k) * pingj; //计算对于该指标下应发苹果数量
ll cost = (ll)ABS(sum[v] - num) * (ll)co + dp[v][k]; //计算对应的代价
checkmin(d[cc + ][k + j], cost + d[cc][j]); //更新最小值
}
}
cc++; //开始枚举下一个节点
}
for(int i = ; i <= mcn; i++) { //枚举每个可能得到的指标
if(d[cc][i] == -) continue; //如果发来该指标不合法则继续
checkmin(dp[u][i], d[cc][i]); //更新下最小值,扫描到最后一个节点之后的指标情况(应当认为是个背包) checkmin(dp[u][i + ], d[cc][i]);//这个步骤基本暗含了如果给根节点发指标的情况应该怎么处理(如果给当前根节点发了个指标的话) }
}
int main() {
while(~scanf("%d", &n)) {
init();
for(int i = ; i < n; i++) {
scanf("%lld", &a[i]);
}
for(int i = ; i < n - ; i++) {
int u, v;
ll c;
scanf("%d%d%lld", &u, &v, &c);
ins(u, v, c);
ins(v, u, c);
}
dfs1(, -);
pingj = sum[] / n;
mcn = sum[] - pingj * n;
memset(dp, -, sizeof(dp));
dfs(, -); printf("%lld\n", dp[][mcn]);
}
return ;
}
//我的代码:
#include<iostream>
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<string>
#include<vector>
#include<stack>
#include<queue>
#include<algorithm>
#include<set>
#include<map>
using namespace std;
#define veci vector<int> #define stai stack<int>
#define ll long long
#define pp pair<int,ll>
#define vecp vector<pp> const long long MAXN=; vecp G[MAXN];
ll cnt[MAXN];
ll summ[MAXN];
ll arr[MAXN];
ll AVG,SHARE;
ll SUM=;
ll dp[MAXN][MAXN];
ll n;
void checkMin(ll &a,ll b)
{
if(a==-||a>b)a=b;
} void dfs_1(int now,int last)
{
int len=G[now].size();
cnt[now]=;
summ[now]=arr[now];
for(int i=;i<len;++i)
{
int tar=G[now][i].first;
if(tar==last)continue;
dfs_1(tar,now);
cnt[now]+=cnt[tar];
summ[now]+=summ[tar];
}
} void dfs(int now,int last)
{
if(cnt[now]==)
{
dp[now][]=dp[now][]=;
return ;
}
int len=G[now].size();
int cc=;
ll d[][MAXN];
memset(d,-,sizeof(d));
d[][]=;
for(int i=;i<len;++i)
{
int tar=G[now][i].first;
ll co=G[now][i].second;
if(tar==last)continue;
dfs(tar,now);
for(int j=;j<=SHARE;++j)
{
if(d[cc&][j]==-)continue;
int c=cc&;
for(int k=;j+k<=SHARE&&k<=cnt[tar];++k)
{
if(dp[tar][k]==-)continue;
ll num=abs(AVG*cnt[tar]+k-summ[tar]);
ll cost=num*co+dp[tar][k];
checkMin(d[(cc+)&][k+j],cost+d[c][j]);
}
}
memset(d[cc&],-,sizeof(d[cc&]));
cc+=;
}
for(int i=;i<=SHARE;++i)
{
int c=cc&;
if(d[c][i]==-)continue;
checkMin(dp[now][i],d[c][i]);
checkMin(dp[now][i+],d[c][i]);
}
} void init()
{
memset(dp,-,sizeof(dp));
for(int i=;i<n;++i)
{
cin>>arr[i];
G[i].clear();
}
for(int i=;i<n;++i)
{
ll a,b,c;cin>>a>>b>>c;
G[a].push_back(make_pair(b,c));
G[b].push_back(make_pair(a,c));
}dfs_1(,-);
AVG = summ[]/n;
SHARE = summ[]%n;
dfs(,-);
cout<<dp[][SHARE]<<endl;
} int main()
{
cin.sync_with_stdio(false);
while(cin>>n)init(); return ;
}
PS: 在过了两天之后再一次重构这个代码发现实际上原作者在设计上有些小坑——checkMin函数在使用过程有可能会把-1赋值进去,于是特别判断下这一点会让代码变得优雅一些。
ZOJ 3231 Apple Transportation 树DP的更多相关文章
- URAL1018 Binary Apple Tree(树dp)
组队赛的时候的一道题,那个时候想了一下感觉dp不怎么好写呀,现在写了出来,交上去过了,但是我觉得我还是应该WA的呀,因为总感觉dp的不对. #pragma warning(disable:4996) ...
- zoj3231 Apple Transportation(最大流)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Apple Transportation Time Limit: 1 Second ...
- POJ 2385 Apple Catching【DP】
题意:2棵苹果树在T分钟内每分钟随机由某一棵苹果树掉下一个苹果,奶牛站在树#1下等着吃苹果,它最多愿意移动W次,问它最多能吃到几个苹果.思路:不妨按时间来思考,一给定时刻i,转移次数已知为j, 则它只 ...
- CF456D A Lot of Games (字典树+DP)
D - A Lot of Games CF#260 Div2 D题 CF#260 Div1 B题 Codeforces Round #260 CF455B D. A Lot of Games time ...
- HDU4916 Count on the path(树dp??)
这道题的题意其实有点略晦涩,定义f(a,b)为 minimum of vertices not on the path between vertices a and b. 其实它加一个minimum ...
- ZOJ3231 Apple Transportation(最小费用流)
题目给你一棵苹果树,然后每个结点上有一定的苹果树,你要将苹果运输达到某个状态,使得均方差最小. 将苹果x个从a->b的花费是x*w,w是边权. 当时比赛的时候想的就是,最后达到的状态一定是sum ...
- Codeforces 219D. Choosing Capital for Treeland (树dp)
题目链接:http://codeforces.com/contest/219/problem/D 树dp //#pragma comment(linker, "/STACK:10240000 ...
- HDU4276 The Ghost Blows Light SPFA&&树dp
题目的介绍以及思路完全参考了下面的博客:http://blog.csdn.net/acm_cxlove/article/details/7964739 做这道题主要是为了加强自己对SPFA的代码的训练 ...
- Tsinsen A1219. 采矿(陈许旻) (树链剖分,线段树 + DP)
[题目链接] http://www.tsinsen.com/A1219 [题意] 给定一棵树,a[u][i]代表u结点分配i人的收益,可以随时改变a[u],查询(u,v)代表在u子树的所有节点,在u- ...
随机推荐
- 如何添加/移除CSS类
在网页设计中,我们常常要使用Javascript来改变页面元素的样式.其中一种办法是改变页面元素的CSS类(Class),这在传统的Javascript里,我们通常是通过处理HTML Dom的clas ...
- 让zepto支持requirejs的方法
window.Zepto = Zepto '$' in window || (window.$ = Zepto) if ( typeof define === "function" ...
- Java语言程序设计(第三版)第二章课后习题答案(仅供参考)
2.1 注意不同类型转换 import java.util.Scanner; public class Ch02 { public static void main(String[] args) ...
- 域名带与不带www的区别
首先我们来说下为什么会产生带www与不带www的两种域名. 不带www的域名为顶级域名或一级域名,如qiankoo.com.带www的为二级域名,如www.qiankoo.com. 在购买域名时,域名 ...
- EPSG:4326
简单说,"EPSG:4326"指的就是WGS84坐标系 参考 http://blog.csdn.net/cloverwindy/article/details/8663968 AU ...
- windows 下设置MTU数值
输入:netsh interface ipv4 show subinterfaces 查询到目前系统的MTU值.再分别输入一行按一次回车键. netsh interface ipv4 set subi ...
- 部署webservice到远程服务器
在本地编写好webservice后并在本机验证正确后,在本地发布后,直接将发布时设置的文件夹复制到远程服务器上,在远程服务器的IIS上默认网站->新建虚拟目录->设置别名->物理路径 ...
- 【转】【C++】【MFC】关于RADIO BUTTON的使用方法
*原文地址:http://blog.csdn.net/c_cyoxi/article/details/23868979 1. 环境:VS2010 2. 分组 将radio1.radio2.radio3 ...
- python logging 模块记录日志
#日志记录到多文件示例 import logging def error_log(message): file_1_1 = logging.FileHandler('error.log', 'a+', ...
- mybatis-mybatis-config.xml详细介绍
1.mybatis-config.xml 1.1:配置,配置可以是引入外部文件,也可以是在本文件内写配置 <!-- <properties resource="jdbc.prop ...