/*
* 对于不在最短路树上的边(x, y)
* 1
* |
* |
* t
* / \
* / \
* x-----y
* 考虑这样一种形态的图, ‘-’ 标记为非最短路树的边
* 对于边集(x, t)内的任意一点 i, 到达它的所有方式一定是 1 -> t -> y -> x -> i
* 这样就可以对树边(x, t)标记 Min = dis[y] + dis[x] + W_{x,y}
* 每个点在标记中取最小
* Answer_i 就是 Min_i - dis[i]
*/
#include <bits/stdc++.h> const int N = 4e3 + , M = 1e5 + ; struct Node {
int u, v, w, nxt;
} G[M << ], E[M << ];
int n, m;
int head[N], now, js, dis[N]; #define gc getchar() inline int read() {
int x = ; char c = gc;
while(c < '' || c > '') c = gc;
while(c >= '' && c <= '') x = x * + c - '', c = gc;
return x;
} inline void write_int(int x) {
printf("%d\n", x);
} inline void Add(int u, int v, int w) {
G[++ now].v = v, G[now].w = w, G[now].nxt = head[u], head[u] = now;
} int fa[N], deep[N], topp[N], size[N], son[N], tree[N], Tree; void Dfs_1(int u, int f_, int dep) {
fa[u] = f_, deep[u] = dep, size[u] = ;
for(int i = head[u]; ~ i; i = G[i].nxt) {
int v = G[i].v;
if(v == f_) continue;
dis[v] = dis[u] + G[i].w;
Dfs_1(v, u, dep + );
size[u] += size[v];
if(size[v] > size[son[u]]) son[u] = v;
}
} void Dfs_2(int u, int tp) {
topp[u] = tp, tree[u] = ++ Tree;
if(!son[u]) return ;
Dfs_2(son[u], tp);
for(int i = head[u]; ~ i; i = G[i].nxt)
if(G[i].v != fa[u] && G[i].v != son[u]) Dfs_2(G[i].v, G[i].v);
} const int oo = ;
int Minn[N << ]; #define lson jd << 1
#define rson jd << 1 | 1 void Build_tree(int l, int r, int jd) {
Minn[jd] = oo;
if(l == r) return ;
int mid = (l + r) >> ;
Build_tree(l, mid, lson), Build_tree(mid + , r, rson);
} void Sec_G(int l, int r, int jd, int x, int y, int w) {
if(x <= l && r <= y) {
Minn[jd] = std:: min(Minn[jd], w);
return ;
}
int mid = (l + r) >> ;
if(x <= mid) Sec_G(l, mid, lson, x, y, w);
if(y > mid) Sec_G(mid + , r, rson, x, y, w);
} void Sec_G_imp(int x, int y, int w) {
int tpx = topp[x], tpy = topp[y];
while(tpx != tpy) {
if(deep[tpx] < deep[tpy]) std:: swap(tpx, tpy), std:: swap(x, y);
Sec_G(, n, , tree[tpx], tree[x], w);
x = fa[tpx], tpx = topp[x];
}
if(x == y) return ;
if(deep[x] < deep[y]) std:: swap(x, y);
Sec_G(, n, , tree[y] + , tree[x], w);
} int Ans[N]; void Dfs_tree(int l, int r, int jd) {
if(l == r) {
Ans[l] = Minn[jd];
return ;
}
int mid = (l + r) >> ;
Minn[lson] = std:: min(Minn[lson], Minn[jd]);
Minn[rson] = std:: min(Minn[rson], Minn[jd]);
Dfs_tree(l, mid, lson), Dfs_tree(mid + , r, rson);
} int main() {
n = read(), m = read();
for(int i = ; i <= n; i ++) head[i] = -;
for(int i = ; i <= m; i ++) {
int u = read(), v = read(), w = read(), opt = read();
if(opt) Add(u, v, w), Add(v, u, w);
else E[++ js].u = u, E[js].v = v, E[js].w = w;
}
Dfs_1(, , );
Dfs_2(, );
Build_tree(, n, );
for(int i = ; i <= js; i ++) {
int x = E[i].u, y = E[i].v;
Sec_G_imp(x, y, dis[x] + dis[y] + E[i].w);
}
Dfs_tree(, n, );
for(int i = ; i <= n; i ++) {
if(Ans[tree[i]] == oo) write_int(-);
else write_int(Ans[tree[i]] - dis[i]);
}
return ;
}

bzoj3694的更多相关文章

  1. bzoj3694最短路

    bzoj3694最短路 Description 给出一个n个点m条边的无向图,n个点的编号从1~n,定义源点为1.定义最短路树如下:从源点1经过边集T到任意一点i有且仅有一条路径,且这条路径是整个图1 ...

  2. [bzoj3694]最短路_树链剖分_线段树

    最短路 bzoj-3694 题目大意:给你一个n个点m条边的无向图,源点为1,并且以点1为根给出最短路树.求对于2到n的每个点i,求最短路,要求不经过给出的最短路树上的1到i的路径上的最后一条边. 注 ...

  3. [BZOJ1576] [BZOJ3694] [USACO2009Jan] 安全路径(最短路径+树链剖分)

    [BZOJ1576] [BZOJ3694] [USACO2009Jan] 安全路径(最短路径+树链剖分) 题面 BZOJ1576和BZOJ3694几乎一模一样,只是BZOJ3694直接给出了最短路树 ...

  4. 「BZOJ3694」「FJ2014集训」最短路

    「BZOJ3694」「FJ2014集训」最短路 首先树剖没得说了,这里说一下并查集的做法, 对于一条非树边,它会影响的点就只有u(i),v(i)到lca,对于lca-v的路径上所有点x,都可通过1-t ...

  5. [bzoj3694]最短路

    Description 给出一个$n$个点$m$条边的无向图,$n$个点的编号从$1-n$,定义源点为$1$. 定义最短路树如下:从源点$1$经过边集$T$到任意一点$i$有且仅有一条路径,且这条路径 ...

  6. 最短路 BZOJ3694 树链剖分+线段树

    分析: 树剖裸题,[Usaco2009 Jan]安全路经Travel 的简化版 剖开最短路树,遍历每一条没在最短路树上的边. 这种情况下,有且仅有u到v路径上,出来lca之外的点能够通过这条边到达,并 ...

  7. bzoj3694: 最短路(树链剖分/并查集)

    bzoj1576的帮我们跑好最短路版本23333(双倍经验!嘿嘿嘿 这题可以用树链剖分或并查集写.树链剖分非常显然,并查集的写法比较妙,涨了个姿势,原来并查集的路径压缩还能这么用... 首先对于不在最 ...

  8. bzoj1576 3694

    两道题目本质是一样的bzoj1576我们先要用dij+heap处理出最短路径树和起点到每个点的最短路径而bzoj3694已经给出了最短路径树,所以直接dfs即可题目要求的是不走起点到每个点最短路径上的 ...

  9. luogu 2934

    同 bzoj3694 需要先求出最短路树 #include <iostream> #include <cstdio> #include <algorithm> #i ...

随机推荐

  1. Layui连接mysql操作CRUD案例

    今天分享的是一个新前端框架Layui,用它来链接数据库实现一下crud的操作. 一:layui简历 layui,是一款采用自身模块规范编写的前端 UI 框架,遵循原生 HTML/CSS/JS 的书写与 ...

  2. Struts2连接Mysql的Crud使用

    今天分享的是struts2框架中增删改查的用法: 一:利用Struts2框架 1.1在pom.xml中导入相关依赖 <project xmlns="http://maven.apach ...

  3. 数据库设计_ERMaster安装使用_PowerDesigner数据设计工具

    数据库设计 1. 说在前面 项目开发的流程包括哪些环节 需求调研[需求调研报告]-- 公司决策层 (1) 根据市场公司需求分析公司是否需要开发软件来辅助日常工作 (2) 公司高层市场考察,市场分析,决 ...

  4. (二)Redis之Jedis概念和HelloWorld实现以及JedisPool的使用

    一.Jedis概念 实际开发中,我们需要用Redis的连接工具连接Redis然后操作Redis, 对于主流语言,Redis都提供了对应的客户端: 官网:https://redis.io/clients ...

  5. 奇妙的算法【10】TX--有效号码、最,小耗时、最小差值、差值输出、异或结果

    昨晚刚刚写的几道算法题,难度也还行,就是全部AC有些困难,当时第一题AC.第二题AC 60%,第四题AC 40%,第五题没有时间写完了,这个应该全部AC了:其中第三题没有写出来 1,是否存在符合规范的 ...

  6. C#基础--go to

    goto语句的用法非常灵活,你可以用它实现很多功能,但是由于goto语句的跳转影响程序的结构,在使用的时候会使人迷茫,所以一般"教材"上都不建议使用,但是用它可以实现递归,循环,选 ...

  7. js之向div contenteditable光标位置添加字符

    js之向div contenteditable光标位置添加字符  原理: 在HTML里面,光标是一个对象,光标对象是只有当你选中某个元素的时候才会出现的. 当我们去点击一个输入框的时候,实际上它会产生 ...

  8. leetcode-64. 最小路径和 · vector + DP

    题面 Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right wh ...

  9. ffmpeg 命令的使用

    当然先安装了 gentoo 下一条命令搞定 emerge  ffmpeg 格式转换 (将file.avi 转换成output.flv) ffmpeg -i  file.avi  output.flv ...

  10. 结对编程作业(python实现)

    一.Github项目地址:https://github.com/asswecanfat/git_place/tree/master/oper_make 二.PSP2.1表格: PSP2.1 Perso ...