Public model for matrix
以下是可以加减乘除(就是乘逆矩阵啦)以及求若干次幂、行列式和逆的矩阵模板。
欢迎大家指正其中可能存在的错误(只验证了求逆的正确性)。
顺便提一下这种复杂度低于定义式求逆的方法,来自于我的高等代数书,思想就是对分块矩阵(A E)进行行变换从而得到(E A^-1),复杂度与消元一样,都是 O(N^3)的。
const int N=405,ha=1e9+7; inline int add(int x,int y){ x+=y; return x>=ha?x-ha:x;}
inline void ADD(int &x,int y){ x+=y; if(x>=ha) x-=ha;} inline int ksm(int x,int y){
int an=1;
for(;y;y>>=1,x=x*(ll)x%ha) if(y&1) an=an*(ll)x%ha;
return an;
}
inline int Get_inv(int x){ return ksm(x,ha-2);} struct matrix{
int a[N][N],n; inline void clear(){ memset(a,0,sizeof(a));}
inline void Base(){ clear(); for(int i=1;i<=n;i++) a[i][i]=1;} inline void input(){
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++) scanf("%d",a[i]+j);
}
inline void output(){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++) printf("%d ",a[i][j]);
puts("");
}
} inline void swap(int x,int y){
for(int i=1;i<=n;i++) swap(a[x][i],a[y][i]);
}
inline void add(int from,int tmp,int to){
for(int i=1;i<=n;i++) ADD(a[to][i],a[from][i]*(ll)tmp%ha);
}
inline void mul(int x,int ml){
for(int i=1;i<=n;i++) a[x][i]=a[x][i]*(ll)ml%ha;
} inline int Determinant(){
int an=1;
matrix b=*this; for(int i=1,o,inv;i<=n;i++){
for(o=i;o<=n;o++) if(b.a[o][i]) break;
if(o>n) return 0;
if(o>i){ an=ha-an; b.swap(o,i);} inv=Get_inv(b.a[i][i]);
for(int j=i+1,tmp;j<=n;j++) if(b.a[j][i])
tmp=ha-inv*(ll)b.a[j][i]%ha,b.add(i,tmp,j); an=an*(ll)b.a[i][i]%ha;
} return an;
} inline matrix ni(){
matrix b; b.n=n,b.Base(); if(!Determinant()) b.clear();
else{ //先化成对角线元素都是1的上三角矩阵 for(int i=1,o,inv;i<=n;i++){
for(o=i;o<=n;o++) if(a[o][i]) break;
if(o>i) swap(o,i),b.swap(o,i); inv=Get_inv(a[i][i]),mul(i,inv),b.mul(i,inv); for(int j=i+1,tmp;j<=n;j++) if(a[j][i])
tmp=ha-a[j][i],add(i,tmp,j),b.add(i,tmp,j);
} //然后再把A消成单位矩阵 for(int i=n-1;i;i--)
for(int j=i+1;j<=n;j++) if(a[i][j]) b.add(j,ha-a[i][j],i),add(j,ha-a[i][j],i);
} return b;
} matrix operator +(const matrix &u){
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++) ADD(a[i][j],u.a[i][j]);
return *this;
} matrix operator -(const matrix &u){
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++) ADD(a[i][j],ha-u.a[i][j]);
return *this;
} matrix operator *(const matrix &u)const{
matrix r; r.clear(),r.n=n;
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++) ADD(r.a[i][j],a[i][k]*(ll)u.a[k][j]%ha);
return r;
} matrix operator /(matrix &u)const{
return *this*u.ni();
} matrix operator ^(int &u){
matrix b,c=*this; b.n=n,b.Base();
for(;u;u>>=1,c=c*c) if(u&1) b=b*c;
return b;
}
}JHY;
Public model for matrix的更多相关文章
- Android笔记——Matrix
转自:http://www.cnblogs.com/qiengo/archive/2012/06/30/2570874.html#translate Matrix的数学原理 在Android中,如果你 ...
- [Web API] Web API 2 深入系列(6) Model绑定(上)
目录 解决什么问题 Model元数据解析 复杂类型 ValueProvider ValueProviderFactory 解决什么问题 Model: Action方法上的参数 Model绑定: 对Ac ...
- Android中图像变换Matrix的原理、代码验证和应用(二)
第二部分 代码验证 在第一部分中讲到的各种图像变换的验证代码如下,一共列出了10种情况.如果要验证其中的某一种情况,只需将相应的代码反注释即可.试验中用到的图片: 其尺寸为162 x 251. 每种变 ...
- Android Matrix
转自 :http://www.cnblogs.com/qiengo/archive/2012/06/30/2570874.html#code Matrix的数学原理 平移变换 旋转变换 缩放变换 错切 ...
- UNITY_MATRIX_IT_MV[Matrix] (转载)
转载 http://blog.csdn.net/cubesky/article/details/38682975 前面发了一篇关于unity Matrix的文章. http://blog.csdn.n ...
- Android源码之Matrix
Matrix类在Android中主要用来进行矩阵变换,其可操作的对象包括图像.点阵.Vector(向量).矩形等. Matrix支持的变换类型主要有以下几种: 1.Translate:平移变换 2.R ...
- android.graphics.Matrix
Matrix类包含了一个3x3的矩阵用来改变坐标,它没有一个构造器来初始化它里边的内容,所以创建实例后需要调用reset()方法生成一个标准matrix,或者调用set..一类的函数,比如setTra ...
- Android图片旋转,缩放,位移,倾斜,对称完整示例(一)——imageView.setImageMatrix(matrix)和Matrix
MainActivity如下: import android.os.Bundle; import android.view.MotionEvent; import android.view.View; ...
- Android Matrix详解
Matrix的数学原理 平移变换 旋转变换 缩放变换 错切变换 对称变换 代码验证 Matrix的数学原理 在Android中,如果你用Matrix进行过图像处理,那么一定知道Matrix这个类.An ...
随机推荐
- CSS定位以及z-index属性(层叠性)的详解(转)
https://blog.csdn.net/weixin_41342585/article/details/79484879
- SQLSERVER中计算某个字段中用分隔符分割的字符的个数
比如字段sid中用'|'分割的一些字符 a|b|c|d,需要通过sql查询出字符的个数是4. 可以使用如下脚本: SELECT LEN(sid)-LEN(REPLACE(sid,'|',''))+ ...
- .netcore项目中使用log4net
log4net配置文件 引入log4net包,创建一个config目录,专门用来放配置文件,添加log4net.config文件. 编写配置文件. <?xml version="1.0 ...
- mongoose整理笔记
一:参考学习网址 npm: https://www.npmjs.com/package/mongoose 官网API:http://mongoosejs.com/docs/guide.html 二:在 ...
- 定义Java类实现字节流转字符流
package com.buaa.comparable; import java.io.BufferedReader;import java.io.File;import java.io.FileIn ...
- Linux下安装php报错:libxml2 not found. Please check your libxml2 installation
ubuntu/debian: apt-get install libxml2-dev centos/redhat: yum install libxml2-devel
- MYSQL8.0以上版本ROOT密码报错及修改
在登录数据库过程中,如果遇到忘记root密码时,该如何解决? 1.使用管理员权限打开命令提示符,在命令行中输入: net stop mysql 2.待mysql服务停止后,输入: mysqld -- ...
- Scrapy 中常用的中间件和管道组件
Pipeline用法 储存到MongoDB pipline.py中的代码 import pymongo class MongoPipeline(object): def __init__(self, ...
- python将一个字符串写入文件中的编码问题
python2将一个字符串写入文件中: 1.如果字符串是str类型 # -*- coding:utf-8 -*- txtFile="今天天气不错" name = "1.t ...
- 用js刷剑指offer(矩形覆盖)
题目描述 我们可以用21的小矩形横着或者竖着去覆盖更大的矩形.请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 牛客网链接 思路 依旧是斐波那契数列 2 * n的大矩形,和n个 ...